314 research outputs found

    SSFSCE: Design of a Sleep Scheduling based Fan Shaped Clustering Model to enhance working Energy Efficiency of WSN

    Get PDF
    To enhance energy level in WSN is a research requirement, which assists in improving their lifetime over a series of communications. To achieve this target, a various variety of clustering & sleep scheduling models are discussed by researchers. Most of these models deploy static clustering & sleep scheduling operations, which limits their applicability & scalability levels. Moreover, dynamic clustering & scheduling models are highly complex, which reduces temporal QoS performance under real-time use cases. In order to reduce the probability of these issues, this text discusses design of the proposed Sleep Scheduling based Fan Shaped Clustering Model to enhance working Energy Efficiency of WSN. The proposed model initially deploys a Grey Wolf Optimization (GWO) Method for dynamic sleep scheduling via temporal performance analysis. The GWO Method models a fitness function that combines temporal usage levels, temporal Quality of Service (QoS), and temporal energy levels. Based on this modelling process, nodes were categorized into wake & sleep nodes, which were further clustered via destination-aware Fan Shaped Clustering (FSC), that assisted in improving QoS performance under multiple scenarios. The FSC Model was combined with a QoS-aware routing model, that assisted in selection of routing paths that can achieve low delay, high throughput, and high packet delivery with higher energy efficiency levels. Efficiency of the model was tested on node & network conditions, and its QoS performance was checked in terms of communication delay, consumption of energy, level of throughput, and Packet Delivery Ratio (PDR) levels. On the basis of these comparative evaluations, it is observed that the new proposed model is able to enhance end-to-end delay by 8.5%, reduce level of energy by 15.5%, while increasing throughput by 8.3%, and PDR by 1.5%, thus making it useful for a different real-time conditions

    A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    Get PDF
    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed

    Distributed Database Management Techniques for Wireless Sensor Networks

    Full text link
    Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.In sensor networks, the large amount of data generated by sensors greatly influences the lifetime of the network. In order to manage this amount of sensed data in an energy-efficient way, new methods of storage and data query are needed. In this way, the distributed database approach for sensor networks is proved as one of the most energy-efficient data storage and query techniques. This paper surveys the state of the art of the techniques used to manage data and queries in wireless sensor networks based on the distributed paradigm. A classification of these techniques is also proposed. The goal of this work is not only to present how data and query management techniques have advanced nowadays, but also show their benefits and drawbacks, and to identify open issues providing guidelines for further contributions in this type of distributed architectures.This work was partially supported by the Instituto de Telcomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Ministerio de Ciencia e Innovacion, through the Plan Nacional de I+D+i 2008-2011 in the Subprograma de Proyectos de Investigacion Fundamental, project TEC2011-27516, by the Polytechnic University of Valencia, though the PAID-05-12 multidisciplinary projects, by Government of Russian Federation, Grant 074-U01, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Diallo, O.; Rodrigues, JJPC.; Sene, M.; Lloret, J. (2013). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems. PP(99):1-17. https://doi.org/10.1109/TPDS.2013.207S117PP9
    corecore