154 research outputs found

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    The Resilience of Massive MIMO PNC to Jamming Attacks in Vehicular Networks

    Get PDF
    In this article, we investigate the resilience of Massive MIMO Physical Layer Network Coding (PNC) to jamming attack in both sub-6 GHz and millimeter-Wave (mmWave) systems in vehicular networks. Massive MIMO generally is resilient to jamming attacks, and we investigate the impact that PNC has on this resilience, if combined with Massive MIMO. The combination of Massive MIMO and PNC has shown a significant improvement in the bit error rate (BER) in our previous investigation. The corresponding framework is analysed against a barraging attack from a jammer, where the jamming channel is not known to the base station (BS), and the jammer can use any number of transmit antennas. Over Rayleigh channel, our simulation results reveal that Massive MIMO PNC performs better in the lower signal-to-noise ratio (SNR) regions to jamming attacks and this is achieved at twice the spectral efficiency. A similar performance is observed over mmWave channel

    Wireless MIMO Switching: Weighted Sum Mean Square Error and Sum Rate Optimization

    Full text link
    This paper addresses joint transceiver and relay design for a wireless multiple-input-multiple-output (MIMO) switching scheme that enables data exchange among multiple users. Here, a multi-antenna relay linearly precodes the received (uplink) signals from multiple users before forwarding the signal in the downlink, where the purpose of precoding is to let each user receive its desired signal with interference from other users suppressed. The problem of optimizing the precoder based on various design criteria is typically non-convex and difficult to solve. The main contribution of this paper is a unified approach to solve the weighted sum mean square error (MSE) minimization and weighted sum rate maximization problems in MIMO switching. Specifically, an iterative algorithm is proposed for jointly optimizing the relay's precoder and the users' receive filters to minimize the weighted sum MSE. It is also shown that the weighted sum rate maximization problem can be reformulated as an iterated weighted sum MSE minimization problem and can therefore be solved similarly to the case of weighted sum MSE minimization. With properly chosen initial values, the proposed iterative algorithms are asymptotically optimal in both high and low signal-to-noise ratio (SNR) regimes for MIMO switching, either with or without self-interference cancellation (a.k.a., physical-layer network coding). Numerical results show that the optimized MIMO switching scheme based on the proposed algorithms significantly outperforms existing approaches in the literature.Comment: This manuscript is under 2nd review of IEEE Transactions on Information Theor

    Cellular Multi-User Two-Way MIMO AF Relaying via Signal Space Alignment: Minimum Weighted SINR Maximization

    Full text link
    In this paper, we consider linear MIMO transceiver design for a cellular two-way amplify-and-forward relaying system consisting of a single multi-antenna base station, a single multi-antenna relay station, and multiple multi-antenna mobile stations (MSs). Due to the two-way transmission, the MSs could suffer from tremendous multi-user interference. We apply an interference management model exploiting signal space alignment and propose a transceiver design algorithm, which allows for alleviating the loss in spectral efficiency due to half-duplex operation and providing flexible performance optimization accounting for each user's quality of service priorities. Numerical comparisons to conventional two-way relaying schemes based on bidirectional channel inversion and spatial division multiple access-only processing show that the proposed scheme achieves superior error rate and average data rate performance
    • …
    corecore