218 research outputs found

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Shoreline extraction based on an active connection matrix (ACM) image enhancement strategy

    Get PDF
    Coastal environments are facing constant changes over time due to their dynamic nature and geological, geomorphological, hydrodynamic, biological, climatic and anthropogenic factors. For these reasons, the monitoring of these areas is crucial for the safeguarding of the cultural heritage and the populations living there. The focus of this paper is shoreline extraction by means of an experimental algorithm, called J-Net Dynamic (Semeion Research Center of Sciences of Communication, Rome, Italy). It was tested on two types of image: a very high resolution (VHR) multispectral image (WorldView-2) and a high resolution (HR) radar synthetic aperture radar (SAR) image (Sentinel-1). The extracted shorelines were compared with those manually digitized for both images independently. The results obtained with the J-Net Dynamic algorithm were also compared with common algorithms, widely used in the literature, including theWorldView water index and the Canny edge detector. The results show that the experimental algorithm is more effective than the others, as it improves shoreline extraction accuracy both in the optical and SAR images

    Advanced Pre-Processing and Change-Detection Techniques for the Analysis of Multitemporal VHR Remote Sensing Images

    Get PDF
    Remote sensing images regularly acquired by satellite over the same geographical areas (multitemporal images) provide very important information on the land cover dynamic. In the last years the ever increasing availability of multitemporal very high geometrical resolution (VHR) remote sensing images (which have sub-metric resolution) resulted in new potentially relevant applications related to environmental monitoring and land cover control and management. The most of these applications are associated with the analysis of dynamic phenomena (both anthropic and non anthropic) that occur at different scales and result in changes on the Earth surface. In this context, in order to adequately exploit the huge amount of data acquired by remote sensing satellites, it is mandatory to develop unsupervised and automatic techniques for an efficient and effective analysis of such kind of multitemporal data. In the literature several techniques have been developed for the automatic analysis of multitemporal medium/high resolution data. However these techniques do not result effective when dealing with VHR images. The main reasons consist in their inability both to exploit the high geometrical detail content of VHR data and to model the multiscale nature of the scene (and therefore of possible changes). In this framework it is important to develop unsupervised change-detection(CD) methods able to automatically manage the large amount of information of VHR data, without the need of any prior information on the area under investigation. Even if these methods usually identify only the presence/absence of changes without giving information about the kind of change occurred, they are considered the most interesting from an operational perspective, as in the most of the applications no multitemporal ground truth information is available. Considering the above mentioned limitations, in this thesis we study the main problems related to multitemporal VHR images with particular attention to registration noise (i.e. the noise related to a non-perfect alignment of the multitemporal images under investigation). Then, on the basis of the results of the conducted analysis, we develop robust unsupervised and automatic change-detection methods. In particular, the following specific issues are addressed in this work: 1. Analysis of the effects of registration noise in multitemporal VHR images and definition of a method for the estimation of the distribution of such kind of noise useful for defining: a. Change-detection techniques robust to registration noise (RN); the proposed techniques are able to significantly reduce the false alarm rate due to RN that is raised by the standard CD techniques when dealing with VHR images. b. Effective registration methods; the proposed strategies are based on a multiscale analysis of the scene which allows one to extract accurate control points for the registration of VHR images. 2. Detection and discrimination of multiple changes in multitemporal images; this techniques allow one to overcome the limitation of the existing unsupervised techniques, as they are able to identify and separate different kinds of change without any prior information on the study areas. 3. Pre-processing techniques for optimizing change detection on VHR images; in particular, in this context we evaluate the impact of: a. Image transformation techniques on the results of the CD process; b. Different strategies of image pansharpening applied to the original multitemporal images on the results of the CD process. For each of the above mentioned topic an analysis of the state of the art is carried out, the limitations of existing methods are pointed out and the proposed solutions to the addressed problems are described in details. Finally, experimental results conducted on both simulated and real data are reported in order to show and confirm the validity of all the proposed methods

    Evaluating the Utility of Object-Based Image Analysis for Ecological Monitoring of Pinon-Juniper Mortality

    Get PDF
    Forested ecosystems in the American Southwest are experiencing change at an unprecedented rate, largely due to mortality events triggered by increased temperatures, drought, and insect infestations. Large-scale changes in the distributions of these ecosystems can potentially alter regional-scale carbon, water and energy dynamics. One biome in particular that has experienced increased mortality and altered forest composition over the past 30 years are Piñon-Juniper woodlands (Pinus edulis, Juniperus spp.) in the American Southwest. New fields of study, in particular, Remote Sensing, are applying and adapting traditional methods for ecological monitoring of these woodlands. Remote sensing offers the potential to synoptically classify and quantify specific tree species within mixed communities such as Piñon-Juniper (PJ) woodlands. This thesis tests the utility and reliability of an Object-Based Image Analysis (OBIA) classification applied to Very-High Resolution (VHR) imagery fused with historical National Agricultural Imagery Program (NAIP) imagery for detecting and quantifying piñon-pine mortality trends on a plateau of PJ woodland in Central New Mexico. Specifically, the research seeks to determine: (1) the accuracy of OBIA applied to VHR imagery for quantifying live PJ and dead piñon; and (2) the potential of NAIP data for creating an ecological timeline of forest mortality from 2005-2014. The OBIA process generated an overall classification accuracy of over 70%, whereas the time-series analysis using NAIP resulted in an overestimation of piñon mortality when compared to two sample-plots at the region

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Creating 3D city models from satellite imagery for integrated assessment and forecasting of solar energy

    Get PDF
    Buildings are the most prominent component in the urban environment. The geometric identification of urban buildings plays an important role in a range of urban applications, including 3D representations of buildings, energy consumption analysis, sustainable development, urban planning, risk assessment, and change detection. In particular, 3D building models can provide a comprehensive assessment of surfaces exposed to solar radiation. However, the identification of the available surfaces on urban structures and the actual locations which receive a sufficient amount of sunlight to increase installed power capacity (e.g. Photovoltaic systems) are crucial considerations for solar energy supply efficiency. Although considerable research has been devoted to detecting the rooftops of buildings, less attention has been paid to creating and completing 3D models of urban buildings. Therefore, there is a need to increase our understanding of the solar energy potential of the surfaces of building envelopes so we can formulate future adaptive energy policies for improving the sustainability of cities. The goal of this thesis was to develop a new approach to automatically model existing buildings for the exploitation of solar energy potential within an urban environment. By investigating building footprints and heights based on shadow information derived from satellite images, 3D city models were generated. Footprints were detected using a two level segmentation process: (1) the iterative graph cuts approach for determining building regions and (2) the active contour method and the adjusted-geometry parameters method for modifying the edges and shapes of the extracted building footprints. Building heights were estimated based on the simulation of artificial shadow regions using identified building footprints and solar information in the image metadata at pre-defined height increments. The difference between the actual and simulated shadow regions at every height increment was computed using the Jaccard similarity coefficient. The 3D models at the first level of detail were then obtained by extruding the building footprints based on their heights by creating image voxels and using the marching cube approach. In conclusion, 3D models of buildings can be generated solely from 2D data of the buildings’attributes in any selected urban area. The approach outperforms the past attempts, and mean error is reduced by at least 21%. Qualitative evaluations of the study illustrate that it is possible to achieve 3D building models based on satellite images with a mean error of less than 5 m. This comprehensive study allows for 3D city models to be generated in the absence of elevation attributes and additional data. Experiments revealed that this novel, automated method can be useful in a number of spatial analyses and urban sustainability applications
    corecore