38,300 research outputs found

    Robust MPC of constrained nonlinear systems based on interval arithmetic

    Get PDF
    A robust MPC for constrained discrete-time nonlinear systems with additive uncertainties is presented. The proposed controller is based on the concept of reachable sets, that is, the sets that contain the predicted evolution of the uncertain system for all possible uncertainties. If processes are nonlinear these sets are very difficult to compute. A conservative approximation based on interval arithmetic is proposed for the online computation of these sets. This technique provides good results with a computational effort only slightly greater than the one corresponding to the nominal prediction. These sets are incorporated into the MPC formulation to achieve robust stability. By choosing a robust positively invariant set as a terminal constraint, a robustly stabilising controller is obtained. Stability is guaranteed in the case of suboptimality of the computed solution. The proposed controller is applied to a continuous stirred tank reactor with an exothermic reaction.Ministerio de Ciencia y Tecnología DPI-2001-2380-03- 01Ministerio de Ciencia y Tecnología DPI-2002-4375-C02-0

    Predictive Second Order Sliding Control of Constrained Linear Systems with Application to Automotive Control Systems

    Full text link
    This paper presents a new predictive second order sliding controller (PSSC) formulation for setpoint tracking of constrained linear systems. The PSSC scheme is developed by combining the concepts of model predictive control (MPC) and second order discrete sliding mode control. In order to guarantee the feasibility of the PSSC during setpoint changes, a virtual reference variable is added to the PSSC cost function to calculate the closest admissible set point. The states of the system are then driven asymptotically to this admissible setpoint by the control action of the PSSC. The performance of the proposed PSSC is evaluated for an advanced automotive engine case study, where a high fidelity physics-based model of a reactivity controlled compression ignition (RCCI) engine is utilized to serve as the virtual test-bed for the simulations. Considering the hard physical constraints on the RCCI engine states and control inputs, simultaneous tracking of engine load and optimal combustion phasing is a challenging objective to achieve. The simulation results of testing the proposed PSSC on the high fidelity RCCI model show that the developed predictive controller is able to track desired engine load and combustion phasing setpoints, with minimum steady state error, and no overshoot. Moreover, the simulation results confirm the robust tracking performance of the PSSC during transient operations, in the presence of engine cyclic variability.Comment: 6 pages, 5 figures, 2018 American Control Conferance (ACC), June 27-29, 2018, Milwaukee, WI, USA. [Accepted in Jan. 2018

    OSQP: An Operator Splitting Solver for Quadratic Programs

    Full text link
    We present a general-purpose solver for convex quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix at almost every iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It can be configured to be division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior-point methods, and sometimes much more when factorization caching or warm start is used. OSQP has already shown a large impact with tens of thousands of users both in academia and in large corporations

    A model predictive controller for robots to follow a virtual leader

    Get PDF
    SUMMARYIn this paper, we develop a model predictive control (MPC) scheme for robots to follow a virtual leader. The stability of this control scheme is guaranteed by adding a terminal state penalty to the cost function and a terminal state region to the optimization constraints. The terminal state region is found by analyzing the stability. Also a terminal state controller is defined for this control scheme. The terminal state controller is a virtual controller and is never used in the control process. Two virtual leader-following formation models are studied. Simulations on different formation patterns are provided to verify the proposed control strategy.</jats:p

    Extremum Seeking-based Iterative Learning Linear MPC

    Full text link
    In this work we study the problem of adaptive MPC for linear time-invariant uncertain models. We assume linear models with parametric uncertainties, and propose an iterative multi-variable extremum seeking (MES)-based learning MPC algorithm to learn on-line the uncertain parameters and update the MPC model. We show the effectiveness of this algorithm on a DC servo motor control example.Comment: To appear at the IEEE MSC 201
    corecore