1,044 research outputs found

    PEPS as ground states: degeneracy and topology

    Get PDF
    We introduce a framework for characterizing Matrix Product States (MPS) and Projected Entangled Pair States (PEPS) in terms of symmetries. This allows us to understand how PEPS appear as ground states of local Hamiltonians with finitely degenerate ground states and to characterize the ground state subspace. Subsequently, we apply our framework to show how the topological properties of these ground states can be explained solely from the symmetry: We prove that ground states are locally indistinguishable and can be transformed into each other by acting on a restricted region, we explain the origin of the topological entropy, and we discuss how to renormalize these states based on their symmetries. Finally, we show how the anyonic character of excitations can be understood as a consequence of the underlying symmetries.Comment: 54 pages, 110 diagrams, 1 figure. v2: minor changes. v3: accepted version, minor change

    Double-talk robust acoustic echo canceller based on CNN filter

    Get PDF
    Conventional acoustic echo cancellation works by using an adaptive algorithm to identify the impulse response of the echo path. In this paper, we use the CNN neural network filter to remove the echo signal from the microphone input signal, so that only the speech signal is transmitted to the far-end. Using the neural network filter, weights are well converged by the general speech signal. Especially it shows the ability to perform stable operation without divergence even in the double-talk state, in which both parties speak simultaneously. As a result of simulation, this system showed superior performance and stable operation compared to the echo canceller of the adaptive filter structure

    System approach to robust acoustic echo cancellation through semi-blind source separation based on independent component analysis

    Get PDF
    We live in a dynamic world full of noises and interferences. The conventional acoustic echo cancellation (AEC) framework based on the least mean square (LMS) algorithm by itself lacks the ability to handle many secondary signals that interfere with the adaptive filtering process, e.g., local speech and background noise. In this dissertation, we build a foundation for what we refer to as the system approach to signal enhancement as we focus on the AEC problem. We first propose the residual echo enhancement (REE) technique that utilizes the error recovery nonlinearity (ERN) to "enhances" the filter estimation error prior to the filter adaptation. The single-channel AEC problem can be viewed as a special case of semi-blind source separation (SBSS) where one of the source signals is partially known, i.e., the far-end microphone signal that generates the near-end acoustic echo. SBSS optimized via independent component analysis (ICA) leads to the system combination of the LMS algorithm with the ERN that allows for continuous and stable adaptation even during double talk. Second, we extend the system perspective to the decorrelation problem for AEC, where we show that the REE procedure can be applied effectively in a multi-channel AEC (MCAEC) setting to indirectly assist the recovery of lost AEC performance due to inter-channel correlation, known generally as the "non-uniqueness" problem. We develop a novel, computationally efficient technique of frequency-domain resampling (FDR) that effectively alleviates the non-uniqueness problem directly while introducing minimal distortion to signal quality and statistics. We also apply the system approach to the multi-delay filter (MDF) that suffers from the inter-block correlation problem. Finally, we generalize the MCAEC problem in the SBSS framework and discuss many issues related to the implementation of an SBSS system. We propose a constrained batch-online implementation of SBSS that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. The proposed techniques are developed from a pragmatic standpoint, motivated by real-world problems in acoustic and audio signal processing. Generalization of the orthogonality principle to the system level of an AEC problem allows us to relate AEC to source separation that seeks to maximize the independence, hence implicitly the orthogonality, not only between the error signal and the far-end signal, but rather, among all signals involved. The system approach, for which the REE paradigm is just one realization, enables the encompassing of many traditional signal enhancement techniques in analytically consistent yet practically effective manner for solving the enhancement problem in a very noisy and disruptive acoustic mixing environment.PhDCommittee Chair: Biing-Hwang Juang; Committee Member: Brani Vidakovic; Committee Member: David V. Anderson; Committee Member: Jeff S. Shamma; Committee Member: Xiaoli M

    CAPACITY ESTIMATION FOR WIRELESS SPREAD-SPECTRUM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (SS-OFDM)

    Get PDF
    OFDM is a modulation and multiple access technique that has been a centre of attention in these recent years. Since its development for military application in the 1960s, technical implementations of OFDM have appeared in digital audio broadcasting, asymmetric digital subscriber lines (ADSL), high speed definition television terrestrial broadcasting, and other systems. Because of its capabilities, OFDM becomes a potential candidate as a multiple access technique for beyond 3G mobile technology. This project presents a studyon OFDM performance for wireless mobile environment. Spread-spectrum is employed in combination withOFDM. This project paper presents a simulation of spread-spectrum OFDM using MATLAB and capacity estimation of the simulated environment in wireless channel. The results of the simulation are then compared with the theoretical capacity values of available 3G systems
    • …
    corecore