55 research outputs found

    Hierarchical Hole-filling For Depth-based View Synthesis In Ftv And 3d Video

    Get PDF
    Methods for hierarchical hole-filling and depth adaptive hierarchical hole-filling and error correcting in 2D images, 3D images, and 3D wrapped images are provided. Hierarchical hole-filling can comprise reducing an image that contains holes, expanding the reduced image, and filling the holes in the image with data obtained from the expanded image. Depth adaptive hierarchical hole-filling can comprise preprocessing the depth map of a 3D wrapped image that contains holes, reducing the preprocessed image, expanding the reduced image, and filling the holes in the 3D wrapped image with data obtained from the expanded image. These methods are can efficiently reduce errors in images and produce 3D images from a 2D images and/or depth map information.Georgia Tech Research Corporatio

    INTERMEDIATE VIEW RECONSTRUCTION FOR MULTISCOPIC 3D DISPLAY

    Get PDF
    This thesis focuses on Intermediate View Reconstruction (IVR) which generates additional images from the available stereo images. The main application of IVR is to generate the content of multiscopic 3D displays, and it can be applied to generate different viewpoints to Free-viewpoint TV (FTV). Although IVR is considered a good approach to generate additional images, there are some problems with the reconstruction process, such as detecting and handling the occlusion areas, preserving the discontinuity at edges, and reducing image artifices through formation of the texture of the intermediate image. The occlusion area is defined as the visibility of such an area in one image and its disappearance in the other one. Solving IVR problems is considered a significant challenge for researchers. In this thesis, several novel algorithms have been specifically designed to solve IVR challenges by employing them in a highly robust intermediate view reconstruction algorithm. Computer simulation and experimental results confirm the importance of occluded areas in IVR. Therefore, we propose a novel occlusion detection algorithm and another novel algorithm to Inpaint those areas. Then, these proposed algorithms are employed in a novel occlusion-aware intermediate view reconstruction that finds an intermediate image with a given disparity between two input images. This novelty is addressed by adding occlusion awareness to the reconstruction algorithm and proposing three quality improvement techniques to reduce image artifices: filling the re-sampling holes, removing ghost contours, and handling the disocclusion area. We compared the proposed algorithms to the previously well-known algorithms on each field qualitatively and quantitatively. The obtained results show that our algorithms are superior to the previous well-known algorithms. The performance of the proposed reconstruction algorithm is tested under 13 real images and 13 synthetic images. Moreover, analysis of a human-trial experiment conducted with 21 participants confirmed that the reconstructed images from our proposed algorithm have very high quality compared with the reconstructed images from the other existing algorithms

    Direction Hole-Filling Method for a 3D View Generator

    Get PDF
    [[abstract]]Depth image-based rendering (DIBR) technology is an approach to creating a virtual 3D image from one single 2D image. A desired view can be synthesised at the receiver side using depth images to make transmission and storage efficient. While this technique has many advantages, one of the key challenges is how to fill the holes caused by disocclusion regions and wrong depth values in the warped left/right images. A common means to alleviate the sizes and the number of holes is to smooth the depth image. But smoothing results in geometric distortions and degrades the depth image quality. This study proposes a hole-filling method based on the oriented texture direction. Parallax correction is first implemented to mitigate the wrong depth values. Texture directional information is then probed in the background pixels where holes take place after warping. Next, in the warped image, holes are filled according to their directions. Experimental results showed that this algorithm preserves the depth information and greatly reduces the amount of geometric distortion.[[notice]]補正完

    Real-time video-plus-depth content creation utilizing time-of-flight sensor - from capture to display

    Get PDF
    Recent developments in 3D camera technologies, display technologies and other related fields have been aiming to provide 3D experience for home user and establish services such as Three-Dimensional Television (3DTV) and Free-Viewpoint Television (FTV). Emerging multiview autostereoscopic displays do not require any eyewear and can be watched by multiple users at the same time, thus are very attractive for home environment usage. To provide a natural 3D impression, autostereoscopic 3D displays have been design to synthesize multi-perspective virtual views of a scene using Depth-Image-Based Rendering (DIBR) techniques. One key issue of DIBR is that scene depth information in a form of a depth map is required in order to synthesize virtual views. Acquiring this information is quite complex and challenging task and still an active research topic. In this thesis, the problem of dynamic 3D video content creation of real-world visual scenes is addressed. The work assumed data acquisition setting including Time-of-Flight (ToF) depth sensor and a single conventional video camera. The main objective of the work is to develop efficient algorithms for the stages of synchronous data acquisition, color and ToF data fusion, and final view-plus-depth frame formatting and rendering. The outcome of this thesis is a prototype 3DTV system capable for rendering live 3D video on a 3D autostereoscopic display. The presented system makes extensive use of the processing capabilities of modern Graphics Processing Units (GPUs) in order to achieve real-time processing rates while providing an acceptable visual quality. Furthermore, the issue of arbitrary view synthesis is investigated in the context of DIBR and a novel approach based on depth layering is proposed. The proposed approach is applicable for general virtual views synthesis, i.e. in terms of different camera parameters such as position, orientation, focal length and varying sensors spatial resolutions. The experimental results demonstrate real-time capability of the proposed method even for CPU-based implementations. It compares favorably to other view synthesis methods in terms of visual quality, while being more computationally efficient

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

    Motion parallax for 360° RGBD video

    Get PDF
    We present a method for adding parallax and real-time playback of 360° videos in Virtual Reality headsets. In current video players, the playback does not respond to translational head movement, which reduces the feeling of immersion, and causes motion sickness for some viewers. Given a 360° video and its corresponding depth (provided by current stereo 360° stitching algorithms), a naive image-based rendering approach would use the depth to generate a 3D mesh around the viewer, then translate it appropriately as the viewer moves their head. However, this approach breaks at depth discontinuities, showing visible distortions, whereas cutting the mesh at such discontinuities leads to ragged silhouettes and holes at disocclusions. We address these issues by improving the given initial depth map to yield cleaner, more natural silhouettes. We rely on a three-layer scene representation, made up of a foreground layer and two static background layers, to handle disocclusions by propagating information from multiple frames for the first background layer, and then inpainting for the second one. Our system works with input from many of today''s most popular 360° stereo capture devices (e.g., Yi Halo or GoPro Odyssey), and works well even if the original video does not provide depth information. Our user studies confirm that our method provides a more compelling viewing experience than without parallax, increasing immersion while reducing discomfort and nausea

    Livrable D5.2 of the PERSEE project : 2D/3D Codec architecture

    Get PDF
    Livrable D5.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D5.2 du projet. Son titre : 2D/3D Codec architectur
    • …
    corecore