1,360 research outputs found

    A Digital Signature Scheme for Long-Term Security

    Full text link
    In this paper we propose a signature scheme based on two intractable problems, namely the integer factorization problem and the discrete logarithm problem for elliptic curves. It is suitable for applications requiring long-term security and provides a more efficient solution than the existing ones

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Blind multi-signature scheme based on factoring and discrete logarithm problem

    Get PDF
    One of the important objectives of information security systems is providing authentication of the electronic documents and messages. In that, blind signature schemes are an important solution to protect the privacy of users in security electronic transactions by highlighting the anonymity of participating parties. Many studies have focused on blind signature schemes, however, most of the studied schemes are based on single computationally difficult problem. Also digital signature schemes from two difficult problems were proposed but the fact is that only finding solution to single hard problem then these digital signature schemes are breakable. In this paper, we propose a new signature schemes base on the combination of the RSA and Schnorr signature schemes which are based on two hard problems: IFP and DLP. Then expanding to propose a single blind signature scheme, a blind multi-signature scheme, which are based on new baseline schemes

    A New Digital Signature Scheme Using Tribonacci Matrices

    Get PDF
    Achieving security is the most important goal for any digital signature scheme. The security of RSA, the most widely used signature is based on the difficulty of factoring of large integers. The minimum key size required for RSA according to current technology is 1024 bits which can be increased with the advancement in technology. Representation of message in the form of matrix can reduce the key size and use of Tribonacci matrices can double the security of RSA. Recently M.Basu et.al introduced a new coding theorycalled Tribonacci coding theory based onTribonacci numbers, that are the generalization ofthe Fibonacci numbers. In this paper we present anew and efficient digital signature scheme usingTribonacci matrices and factoring
    corecore