8,460 research outputs found

    Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN Inference Engine

    Get PDF
    Deep neural networks have achieved impressive results in computer vision and machine learning. Unfortunately, state-of-the-art networks are extremely compute and memory intensive which makes them unsuitable for mW-devices such as IoT end-nodes. Aggressive quantization of these networks dramatically reduces the computation and memory footprint. Binary-weight neural networks (BWNs) follow this trend, pushing weight quantization to the limit. Hardware accelerators for BWNs presented up to now have focused on core efficiency, disregarding I/O bandwidth and system-level efficiency that are crucial for deployment of accelerators in ultra-low power devices. We present Hyperdrive: a BWN accelerator dramatically reducing the I/O bandwidth exploiting a novel binary-weight streaming approach, which can be used for arbitrarily sized convolutional neural network architecture and input resolution by exploiting the natural scalability of the compute units both at chip-level and system-level by arranging Hyperdrive chips systolically in a 2D mesh while processing the entire feature map together in parallel. Hyperdrive achieves 4.3 TOp/s/W system-level efficiency (i.e., including I/Os)---3.1x higher than state-of-the-art BWN accelerators, even if its core uses resource-intensive FP16 arithmetic for increased robustness

    On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation

    Get PDF
    Machine Learning (ML) is making a strong resurgence in tune with the massive generation of unstructured data which in turn requires massive computational resources. Due to the inherently compute- and power-intensive structure of Neural Networks (NNs), hardware accelerators emerge as a promising solution. However, with technology node scaling below 10nm, hardware accelerators become more susceptible to faults, which in turn can impact the NN accuracy. In this paper, we study the resilience aspects of Register-Transfer Level (RTL) model of NN accelerators, in particular, fault characterization and mitigation. By following a High-Level Synthesis (HLS) approach, first, we characterize the vulnerability of various components of RTL NN. We observed that the severity of faults depends on both i) application-level specifications, i.e., NN data (inputs, weights, or intermediate), NN layers, and NN activation functions, and ii) architectural-level specifications, i.e., data representation model and the parallelism degree of the underlying accelerator. Second, motivated by characterization results, we present a low-overhead fault mitigation technique that can efficiently correct bit flips, by 47.3% better than state-of-the-art methods.Comment: 8 pages, 6 figure

    Real-Time Dense Stereo Matching With ELAS on FPGA Accelerated Embedded Devices

    Full text link
    For many applications in low-power real-time robotics, stereo cameras are the sensors of choice for depth perception as they are typically cheaper and more versatile than their active counterparts. Their biggest drawback, however, is that they do not directly sense depth maps; instead, these must be estimated through data-intensive processes. Therefore, appropriate algorithm selection plays an important role in achieving the desired performance characteristics. Motivated by applications in space and mobile robotics, we implement and evaluate a FPGA-accelerated adaptation of the ELAS algorithm. Despite offering one of the best trade-offs between efficiency and accuracy, ELAS has only been shown to run at 1.5-3 fps on a high-end CPU. Our system preserves all intriguing properties of the original algorithm, such as the slanted plane priors, but can achieve a frame rate of 47fps whilst consuming under 4W of power. Unlike previous FPGA based designs, we take advantage of both components on the CPU/FPGA System-on-Chip to showcase the strategy necessary to accelerate more complex and computationally diverse algorithms for such low power, real-time systems.Comment: 8 pages, 7 figures, 2 table
    corecore