41,292 research outputs found

    Constructing an overall dynamical model for a system with changing design parameter properties

    No full text
    This study considers the identification problem for a class of non-linear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient Common Model Structure Selection (CMSS) algorithm, called the Extended Forward Orthogonal Regression (EFOR) algorithm, is proposed to select such a common model structure. Two examples are presented to illustrate the application and the effectiveness of the new identification approach

    A comparative study on global wavelet and polynomial models for nonlinear regime-switching systems

    Get PDF
    A comparative study of wavelet and polynomial models for non-linear Regime-Switching (RS) systems is carried out. RS systems, considered in this study, are a class of severely non-linear systems, which exhibit abrupt changes or dramatic breaks in behaviour, due to RS caused by associated events. Both wavelet and polynomial models are used to describe discontinuous dynamical systems, where it is assumed that no a priori information about the inherent model structure and the relative regime switches of the underlying dynamics is known, but only observed input-output data are available. An Orthogonal Least Squares (OLS) algorithm interfered with by an Error Reduction Ratio (ERR) index and regularised by an Approximate Minimum Description Length (AMDL) criterion, is used to construct parsimonious wavelet and polynomial models. The performance of the resultant wavelet models is compared with that of the relative polynomial models, by inspecting the predictive capability of the associated representations. It is shown from numerical results that wavelet models are superior to polynomial models, in respect of generalisation properties, for describing severely non-linear RS systems

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Model structure selection using an integrated forward orthogonal search algorithm interfered with squared correlation and mutual information

    Get PDF
    Model structure selection plays a key role in nonlinear system identification. The first step in nonlinear system identification is to determine which model terms should be included in the model. Once significant model terms have been determined, a model selection criterion can then be applied to select a suitable model subset. The well known orthogonal least squares type algorithms are one of the most efficient and commonly used techniques for model structure selection. However, it has been observed that the orthogonal least squares type algorithms may occasionally select incorrect model terms or yield a redundant model subset in the presence of particular noise structures or input signals. A very efficient integrated forward orthogonal searching (IFOS) algorithm, which is interfered with squared correlation and mutual information, and which incorporates a general cross-validation (GCV) criterion and hypothesis tests, is introduced to overcome these limitations in model structure selection
    • …
    corecore