408 research outputs found

    A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins

    Get PDF
    BACKGROUND: Structure prediction of membrane proteins is still a challenging computational problem. Hidden Markov models (HMM) have been successfully applied to the problem of predicting membrane protein topology. In a predictive task, the HMM is endowed with a decoding algorithm in order to assign the most probable state path, and in turn the labels, to an unknown sequence. The Viterbi and the posterior decoding algorithms are the most common. The former is very efficient when one path dominates, while the latter, even though does not guarantee to preserve the HMM grammar, is more effective when several concurring paths have similar probabilities. A third good alternative is 1-best, which was shown to perform equal or better than Viterbi. RESULTS: In this paper we introduce the posterior-Viterbi (PV) a new decoding which combines the posterior and Viterbi algorithms. PV is a two step process: first the posterior probability of each state is computed and then the best posterior allowed path through the model is evaluated by a Viterbi algorithm. CONCLUSION: We show that PV decoding performs better than other algorithms when tested on the problem of the prediction of the topology of beta-barrel membrane proteins

    Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins

    Get PDF
    BACKGROUND: Hidden Markov Models (HMMs) have been extensively used in computational molecular biology, for modelling protein and nucleic acid sequences. In many applications, such as transmembrane protein topology prediction, the incorporation of limited amount of information regarding the topology, arising from biochemical experiments, has been proved a very useful strategy that increased remarkably the performance of even the top-scoring methods. However, no clear and formal explanation of the algorithms that retains the probabilistic interpretation of the models has been presented so far in the literature. RESULTS: We present here, a simple method that allows incorporation of prior topological information concerning the sequences at hand, while at the same time the HMMs retain their full probabilistic interpretation in terms of conditional probabilities. We present modifications to the standard Forward and Backward algorithms of HMMs and we also show explicitly, how reliable predictions may arise by these modifications, using all the algorithms currently available for decoding HMMs. A similar procedure may be used in the training procedure, aiming at optimizing the labels of the HMM's classes, especially in cases such as transmembrane proteins where the labels of the membrane-spanning segments are inherently misplaced. We present an application of this approach developing a method to predict the transmembrane regions of alpha-helical membrane proteins, trained on crystallographically solved data. We show that this method compares well against already established algorithms presented in the literature, and it is extremely useful in practical applications. CONCLUSION: The algorithms presented here, are easily implemented in any kind of a Hidden Markov Model, whereas the prediction method (HMM-TM) is freely available for academic users at , offering the most advanced decoding options currently available

    Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method

    Get PDF
    BACKGROUND: Prediction of the transmembrane strands and topology of β-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on Hidden Markov Models (HMMs), on Neural Networks (NNs) and on Support Vector Machines (SVMs). In this work, we compare the different available methods for topology prediction of β-barrel outer membrane proteins. We evaluate their performance on a non-redundant dataset of 20 β-barrel outer membrane proteins of gram-negative bacteria, with structures known at atomic resolution. Also, we describe, for the first time, an effective way to combine the individual predictors, at will, to a single consensus prediction method. RESULTS: We assess the statistical significance of the performance of each prediction scheme and conclude that Hidden Markov Model based methods, HMM-B2TMR, ProfTMB and PRED-TMBB, are currently the best predictors, according to either the per-residue accuracy, the segments overlap measure (SOV) or the total number of proteins with correctly predicted topologies in the test set. Furthermore, we show that the available predictors perform better when only transmembrane β-barrel domains are used for prediction, rather than the precursor full-length sequences, even though the HMM-based predictors are not influenced significantly. The consensus prediction method performs significantly better than each individual available predictor, since it increases the accuracy up to 4% regarding SOV and up to 15% in correctly predicted topologies. CONCLUSIONS: The consensus prediction method described in this work, optimizes the predicted topology with a dynamic programming algorithm and is implemented in a web-based application freely available to non-commercial users at

    Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discriminative models are designed to naturally address classification tasks. However, some applications require the inclusion of grammar rules, and in these cases generative models, such as Hidden Markov Models (HMMs) and Stochastic Grammars, are routinely applied.</p> <p>Results</p> <p>We introduce Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs) as an extension of Hidden Conditional Random Fields (HCRFs). GRHCRFs while preserving the discriminative character of HCRFs, can assign labels in agreement with the production rules of a defined grammar. The main GRHCRF novelty is the possibility of including in HCRFs prior knowledge of the problem by means of a defined grammar. Our current implementation allows <it>regular grammar </it>rules. We test our GRHCRF on a typical biosequence labeling problem: the prediction of the topology of Prokaryotic outer-membrane proteins.</p> <p>Conclusion</p> <p>We show that in a typical biosequence labeling problem the GRHCRF performs better than CRF models of the same complexity, indicating that GRHCRFs can be useful tools for biosequence analysis applications.</p> <p>Availability</p> <p>GRHCRF software is available under GPLv3 licence at the website</p> <p><url>http://www.biocomp.unibo.it/~savojard/biocrf-0.9.tar.gz.</url></p

    DeepSig: Deep learning improves signal peptide detection in proteins

    Get PDF
    Motivation: The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Results: Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. Availability and implementation: DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website

    New decoding algorithms for Hidden Markov Models using distance measures on labellings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Existing hidden Markov model decoding algorithms do not focus on approximately identifying the sequence feature boundaries.</p> <p>Results</p> <p>We give a set of algorithms to compute the conditional probability of all labellings "near" a reference labelling <it>λ </it>for a sequence <it>y </it>for a variety of definitions of "near". In addition, we give optimization algorithms to find the best labelling for a sequence in the robust sense of having all of its feature boundaries nearly correct. Natural problems in this domain are <it>NP</it>-hard to optimize. For membrane proteins, our algorithms find the approximate topology of such proteins with comparable success to existing programs, while being substantially more accurate in estimating the positions of transmembrane helix boundaries.</p> <p>Conclusion</p> <p>More robust HMM decoding may allow for better analysis of sequence features, in reasonable runtimes.</p

    Machine-learning methods for structure prediction of β-barrel membrane proteins

    Get PDF
    Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction

    Machine learning applications for the topology prediction of transmembrane beta-barrel proteins

    Get PDF
    The research topic for this PhD thesis focuses on the topology prediction of beta-barrel transmembrane proteins. Transmembrane proteins adopt various conformations that are about the functions that they provide. The two most predominant classes are alpha-helix bundles and beta-barrel transmembrane proteins. Alpha-helix proteins are present in larger numbers than beta-barrel transmembrane proteins in structure databases. Therefore, there is a need to find computational tools that can predict and detect the structure of beta-barrel transmembrane proteins. Transmembrane proteins are used for active transport across the membrane or signal transduction. Knowing the importance of their roles, it becomes essential to understand the structures of the proteins. Transmembrane proteins are also a significant focus for new drug discovery. Transmembrane beta-barrel proteins play critical roles in the translocation machinery, pore formation, membrane anchoring, and ion exchange. In bioinformatics, many years of research have been spent on the topology prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-barrel) proteins topology prediction have been overshadowed, and the prediction accuracy could be improved with further research. Various methodologies have been developed in the past to predict TMB proteins topology. Methods developed in the literature that are available include turn identification, hydrophobicity profiles, rule-based prediction, HMM (Hidden Markov model), ANN (Artificial Neural Networks), radial basis function networks, or combinations of methods. The use of cascading classifier has never been fully explored. This research presents and evaluates approaches such as ANN (Artificial Neural Networks), KNN (K-Nearest Neighbors, SVM (Support Vector Machines), and a novel approach to TMB topology prediction with the use of a cascading classifier. Computer simulations have been implemented in MATLAB, and the results have been evaluated. Data were collected from various datasets and pre-processed for each machine learning technique. A deep neural network was built with an input layer, hidden layers, and an output. Optimisation of the cascading classifier was mainly obtained by optimising each machine learning algorithm used and by starting using the parameters that gave the best results for each machine learning algorithm. The cascading classifier results show that the proposed methodology predicts transmembrane beta-barrel proteins topologies with high accuracy for randomly selected proteins. Using the cascading classifier approach, the best overall accuracy is 76.3%, with a precision of 0.831 and recall or probability of detection of 0.799 for TMB topology prediction. The accuracy of 76.3% is achieved using a two-layers cascading classifier. By constructing and using various machine-learning frameworks, systems were developed to analyse the TMB topologies with significant robustness. We have presented several experimental findings that may be useful for future research. Using the cascading classifier, we used a novel approach for the topology prediction of TMB proteins

    SMURFLite: combining simplified Markov random fields with simulated evolution improves remote homology detection for beta-structural proteins into the twilight zone

    Get PDF
    Motivation: One of the most successful methods to date for recognizing protein sequences that are evolutionarily related has been profile hidden Markov models (HMMs). However, these models do not capture pairwise statistical preferences of residues that are hydrogen bonded in beta sheets. These dependencies have been partially captured in the HMM setting by simulated evolution in the training phase and can be fully captured by Markov random fields (MRFs). However, the MRFs can be computationally prohibitive when beta strands are interleaved in complex topologies. We introduce SMURFLite, a method that combines both simplified MRFs and simulated evolution to substantially improve remote homology detection for beta structures. Unlike previous MRF-based methods, SMURFLite is computationally feasible on any beta-structural motif
    corecore