716 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Performance Modeling and Prediction for the Scalable Solution of Partial Differential Equations on Unstructured Grids

    Get PDF
    This dissertation studies the sources of poor performance in scientific computing codes based on partial differential equations (PDEs), which typically perform at a computational rate well below other scientific simulations (e.g., those with dense linear algebra or N-body kernels) on modern architectures with deep memory hierarchies. We identify that the primary factors responsible for this relatively poor performance are: insufficient available memory bandwidth, low ratio of work to data size (good algorithmic efficiency), and nonscaling cost of synchronization and gather/scatter operations (for a fixed problem size scaling). This dissertation also illustrates how to reuse the legacy scientific and engineering software within a library framework. Specifically, a three-dimensional unstructured grid incompressible Euler code from NASA has been parallelized with the Portable Extensible Toolkit for Scientific Computing (PETSc) library for distributed memory architectures. Using this newly instrumented code (called PETSc-FUN3D) as an example of a typical PDE solver, we demonstrate some strategies that are effective in tolerating the latencies arising from the hierarchical memory system and the network. Even on a single processor from each of the major contemporary architectural families, the PETSc-FUN3D code runs from 2.5 to 7.5 times faster than the legacy code on a medium-sized data set (with approximately 105 degrees of freedom). The major source of performance improvement is the increased locality in data reference patterns achieved through blocking, interlacing, and edge reordering. To explain these performance gains, we provide simple performance models based on memory bandwidth and instruction issue rates. Experimental evidence, in terms of translation lookaside buffer (TLB) and data cache miss rates, achieved memory bandwidth, and graduated floating point instructions per memory reference, is provided through accurate measurements with hardware counters. The performance models and experimental results motivate algorithmic and software practices that lead to improvements in both parallel scalability and per-node performance. We identify the bottlenecks to scalability (algorithmic as well as implementation) for a fixed-size problem when the number of processors grows to several thousands (the expected level of concurrency on terascale architectures). We also evaluate the hybrid programming model (mixed distributed/shared) from a performance standpoint

    Extensions of Task-based Runtime for High Performance Dense Linear Algebra Applications

    Get PDF
    On the road to exascale computing, the gap between hardware peak performance and application performance is increasing as system scale, chip density and inherent complexity of modern supercomputers are expanding. Even if we put aside the difficulty to express algorithmic parallelism and to efficiently execute applications at large scale, other open questions remain. The ever-growing scale of modern supercomputers induces a fast decline of the Mean Time To Failure. A generic, low-overhead, resilient extension becomes a desired aptitude for any programming paradigm. This dissertation addresses these two critical issues, designing an efficient unified linear algebra development environment using a task-based runtime, and extending a task-based runtime with fault tolerant capabilities to build a generic framework providing both soft and hard error resilience to task-based programming paradigm. To bridge the gap between hardware peak performance and application perfor- mance, a unified programming model is designed to take advantage of a lightweight task-based runtime to manage the resource-specific workload, and to control the data ow and parallel execution of tasks. Under this unified development, linear algebra tasks are abstracted across different underlying heterogeneous resources, including multicore CPUs, GPUs and Intel Xeon Phi coprocessors. Performance portability is guaranteed and this programming model is adapted to a wide range of accelerators, supporting both shared and distributed-memory environments. To solve the resilient challenges on large scale systems, fault tolerant mechanisms are designed for a task-based runtime to protect applications against both soft and hard errors. For soft errors, three additions to a task-based runtime are explored. The first recovers the application by re-executing minimum number of tasks, the second logs intermediary data between tasks to minimize the necessary re-execution, while the last one takes advantage of algorithmic properties to recover the data without re- execution. For hard errors, we propose two generic approaches, which augment the data logging mechanism for soft errors. The first utilizes non-volatile storage device to save logged data, while the second saves local logged data on a remote node to protect against node failure. Experimental results have confirmed that our soft and hard error fault tolerant mechanisms exhibit the expected correctness and efficiency

    Doctor of Philosophy

    Get PDF
    dissertationMemory access irregularities are a major bottleneck for bandwidth limited problems on Graphics Processing Unit (GPU) architectures. GPU memory systems are designed to allow consecutive memory accesses to be coalesced into a single memory access. Noncontiguous accesses within a parallel group of threads working in lock step may cause serialized memory transfers. Irregular algorithms may have data-dependent control flow and memory access, which requires runtime information to be evaluated. Compile time methods for evaluating parallelism, such as static dependence graphs, are not capable of evaluating irregular algorithms. The goals of this dissertation are to study irregularities within the context of unstructured mesh and sparse matrix problems, analyze the impact of vectorization widths on irregularities, and present data-centric methods that improve control flow and memory access irregularity within those contexts. Reordering associative operations has often been exploited for performance gains in parallel algorithms. This dissertation presents a method for associative reordering of stencil computations over unstructured meshes that increases data reuse through caching. This novel parallelization scheme offers considerable speedups over standard methods. Vectorization widths can have significant impact on performance in vectorized computations. Although the hardware vector width is generally fixed, the logical vector width used within a computation can range from one up to the width of the computation. Significant performance differences can occur due to thread scheduling and resource limitations. This dissertation analyzes the impact of vectorization widths on dense numerical computations such as 3D dG postprocessing. It is difficult to efficiently perform dynamic updates on traditional sparse matrix formats. Explicitly controlling memory segmentation allows for in-place dynamic updates in sparse matrices. Dynamically updating the matrix without rebuilding or sorting greatly improves processing time and overall throughput. This dissertation presents a new sparse matrix format, dynamic compressed sparse row (DCSR), which allows for dynamic streaming updates to a sparse matrix. A new method for parallel sparse matrix-matrix multiplication (SpMM) that uses dynamic updates is also presented

    Resilience for Asynchronous Iterative Methods for Sparse Linear Systems

    Get PDF
    Large scale simulations are used in a variety of application areas in science and engineering to help forward the progress of innovation. Many spend the vast majority of their computational time attempting to solve large systems of linear equations; typically arising from discretizations of partial differential equations that are used to mathematically model various phenomena. The algorithms used to solve these problems are typically iterative in nature, and making efficient use of computational time on High Performance Computing (HPC) clusters involves constantly improving these iterative algorithms. Future HPC platforms are expected to encounter three main problem areas: scalability of code, reliability of hardware, and energy efficiency of the platform. The HPC resources that are expected to run the large programs are planned to consist of billions of processing units that come from more traditional multicore processors as well as a variety of different hardware accelerators. This growth in parallelism leads to the presence of all three problems. Previously, work on algorithm development has focused primarily on creating fault tolerance mechanisms for traditional iterative solvers. Recent work has begun to revisit using asynchronous methods for solving large scale applications, and this dissertation presents research into fault tolerance for fine-grained methods that are asynchronous in nature. Classical convergence results for asynchronous methods are revisited and modified to account for the possible occurrence of a fault, and a variety of techniques for recovery from the effects of a fault are proposed. Examples of how these techniques can be used are shown for various algorithms, including an analysis of a fine-grained algorithm for computing incomplete factorizations. Lastly, numerous modeling and simulation tools for the further construction of iterative algorithms for HPC applications are developed, including numerical models for simulating faults and a simulation framework that can be used to extrapolate the performance of algorithms towards future HPC systems

    Semiannual report, 1 October 1990 - 31 March 1991

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized

    Computer Science and Technology Series : XV Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC'09 was the fifteenth Congress in the CACIC series. It was organized by the School of Engineering of the National University of Jujuy. The Congress included 9 Workshops with 130 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. CACIC 2009 was organized following the traditional Congress format, with 9 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 267 submissions. An average of 2.7 review reports were collected for each paper, for a grand total of 720 review reports that involved about 300 different reviewers. A total of 130 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Tomography-based overlay network monitoring

    Get PDF

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Efficient Online Processing for Advanced Analytics

    Get PDF
    With the advent of emerging technologies and the Internet of Things, the importance of online data analytics has become more pronounced. Businesses and companies are adopting approaches that provide responsive analytics to stay competitive in the global marketplace. Online analytics allow data analysts to promptly react to patterns or to gain preliminary insights from early results that aid in research, decision making, and effective strategy planning. The growth of data-velocity in a variety of domains including, high-frequency trading, social networks, infrastructure monitoring, and advertising require adopting online engines that can efficiently process continuous streams of data. This thesis presents foundations, techniques, and systems' design that extend the state-of-the-art in online query processing to efficiently support relational joins with arbitrary join-predicates (beyond traditional equi-joins); and to support other data models (beyond relational) that target machine learning and graph computations. The thesis is divided into two parts: We first present a brief overview of Squall, our open-source online query processing engine that supports SQL-like queries on top of streams. Then, we focus on extending Squall to support efficient theta-join processing. Scalable distributed join processing requires a partitioning policy that evenly distributes the processing load while minimizing the size of maintained state and duplicated messages. Efficient load-balance demands apriori-statistics which are not available in the online setting. We propose a novel operator that continuously adjusts itself to the data dynamics, through adaptive dataflow routing and state repartitioning. It is also resilient to data-skew, maintains high throughput rates, avoids blocking during state repartitioning, and behaves as a black-box dataflow operator with provable performance guarantees. Our evaluation demonstrates that the proposed operator outperforms the state-of-the-art static partitioning schemes in resource utilization, throughput, and execution time up to 7x. In the second part, we present a novel framework that supports the Incremental View Maintenance (IVM) of workloads expressed as linear algebra programs. Linear algebra represents a concrete substrate for advanced analytical tasks including, machine learning, scientific computation, and graph algorithms. Previous works on relational calculus IVM are not applicable to matrix algebra workloads. This is because a single entry change to an input-matrix results in changes all over the intermediate views, rendering IVM useless in comparison to re-evaluation. We present Lago, a unified modular compiler framework that supports the IVM of a broad class of linear algebra programs. Lago automatically derives and optimizes incremental trigger programs of analytical computations, while freeing the user from erroneous manual derivations, low-level implementation details, and performance tuning. We present a novel technique that captures Δ\Delta changes as low-rank matrices. Low-rank matrices are representable in a compressed factored form that enables cheaper computations. Lago automatically propagates the factored representation across program statements to derive an efficient trigger program. Moreover, Lago extends its support to other domains that use different semi-ring configurations, e.g., graph applications. Our evaluation results demonstrate orders of magnitude (10x-1
    • …
    corecore