32,730 research outputs found

    Multiplatform biomarker identification using a data-driven approach enables single-sample classification

    Get PDF
    Background: High-throughput gene expression profiles have allowed discovery of potential biomarkers enabling early diagnosis, prognosis and developing individualized treatment. However, it remains a challenge to identify a set of reliable and reproducible biomarkers across various gene expression platforms and laboratories for single sample diagnosis and prognosis. We address this need with our Data-Driven Reference (DDR) approach, which employs stably expressed housekeeping genes as references to eliminate platform-specific biases and non-biological variabilities. Results: Our method identifies biomarkers with “built-in” features, and these features can be interpreted consistently regardless of profiling technology, which enable classification of single-sample independent of platforms. Validation with RNA-seq data of blood platelets shows that DDR achieves the superior performance in classification of six different tumor types as well as molecular target statuses (such as MET or HER2-positive, and mutant KRAS, EGFR or PIK3CA) with smaller sets of biomarkers. We demonstrate on the three microarray datasets that our method is capable of identifying robust biomarkers for subgrouping medulloblastoma samples with data perturbation due to different microarray platforms. In addition to identifying the majority of subgroup-specific biomarkers in CodeSet of nanoString, some potential new biomarkers for subgrouping medulloblastoma were detected by our method. Conclusions: In this study, we present a simple, yet powerful data-driven method which contributes significantly to identification of robust cross-platform gene signature for disease classification of single-patient to facilitate precision medicine. In addition, our method provides a new strategy for transcriptome analysis

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Discussion of: Treelets--An adaptive multi-scale basis for sparse unordered data

    Full text link
    This is a discussion of paper "Treelets--An adaptive multi-scale basis for sparse unordered data" [arXiv:0707.0481] by Ann B. Lee, Boaz Nadler and Larry Wasserman. In this paper the authors defined a new type of dimension reduction algorithm, namely, the treelet algorithm. The treelet method has the merit of being completely data driven, and its decomposition is easier to interpret as compared to PCR. It is suitable in some certain situations, but it also has its own limitations. I will discuss both the strength and the weakness of this method when applied to microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS137E the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction

    Get PDF
    In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction error estimation, which is quantitatively assessed in the present manuscript. The focus of our work is on class prediction based on high-dimensional data (e.g. microarray data), since such analyses are particularly exposed to this kind of bias. In our study we consider a total of 124 variants of classifiers (possibly including variable selection or tuning steps) within a cross-validation evaluation scheme. The classifiers are applied to original and modified real microarray data sets, some of which are obtained by randomly permuting the class labels to mimic non-informative predictors while preserving their correlation structure. We then assess the minimal misclassification rate over the different variants of classifiers in order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven manner. The bias resulting from the parameter tuning (including gene selection parameters as a special case) and the bias resulting from the choice of the classification method are examined both separately and jointly. We conclude that the strategy to present only the optimal result is not acceptable, and suggest alternative approaches for properly reporting classification accuracy

    Alignment of time course gene expression data and the classification of developmentally driven genes with hidden Markov models

    Get PDF
    BACKGROUND: We consider data from a time course microarray experiment that was conducted on grapevines over the development cycle of the grape berries at two different vineyards in South Australia. Although the underlying biological process of berry development is the same at both vineyards, there are differences in the timing of the development due to local conditions. We aim to align the data from the two vineyards to enable an integrated analysis of the gene expression and use the alignment of the expression profiles to classify likely developmental function. RESULTS: We present a novel alignment method based on hidden Markov models (HMMs) and use the method to align the motivating grapevine data. We show that our alignment method is robust against subsets of profiles that are not suitable for alignment, investigate alignment diagnostics under the model and demonstrate the classification of developmentally driven genes. CONCLUSIONS: The classification of developmentally driven genes both validates that the alignment we obtain is meaningful and also gives new evidence that can be used to identify the role of genes with unknown function. Using our alignment methodology, we find at least 1279 grapevine probe sets with no current annotated function that are likely to be controlled in a developmental manner.Sean Robinson, Garique Glonek, Inge Koch, Mark Thomas, and Christopher Davie

    Partition Decoupling for Multi-gene Analysis of Gene Expression Profiling Data

    Get PDF
    We present the extention and application of a new unsupervised statistical learning technique--the Partition Decoupling Method--to gene expression data. Because it has the ability to reveal non-linear and non-convex geometries present in the data, the PDM is an improvement over typical gene expression analysis algorithms, permitting a multi-gene analysis that can reveal phenotypic differences even when the individual genes do not exhibit differential expression. Here, we apply the PDM to publicly-available gene expression data sets, and demonstrate that we are able to identify cell types and treatments with higher accuracy than is obtained through other approaches. By applying it in a pathway-by-pathway fashion, we demonstrate how the PDM may be used to find sets of mechanistically-related genes that discriminate phenotypes.Comment: Revise

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems
    • …
    corecore