419 research outputs found

    Nonintrusive Speech Intelligibility Prediction Using Convolutional Neural Networks

    Get PDF

    Speech assessment and characterization for law enforcement applications

    No full text
    Speech signals acquired, transmitted or stored in non-ideal conditions are often degraded by one or more effects including, for example, additive noise. These degradations alter the signal properties in a manner that deteriorates the intelligibility or quality of the speech signal. In the law enforcement context such degradations are commonplace due to the limitations in the audio collection methodology, which is often required to be covert. In severe degradation conditions, the acquired signal may become unintelligible, losing its value in an investigation and in less severe conditions, a loss in signal quality may be encountered, which can lead to higher transcription time and cost. This thesis proposes a non-intrusive speech assessment framework from which algorithms for speech quality and intelligibility assessment are derived, to guide the collection and transcription of law enforcement audio. These methods are trained on a large database labelled using intrusive techniques (whose performance is verified with subjective scores) and shown to perform favorably when compared with existing non-intrusive techniques. Additionally, a non-intrusive CODEC identification and verification algorithm is developed which can identify a CODEC with an accuracy of 96.8 % and detect the presence of a CODEC with an accuracy higher than 97 % in the presence of additive noise. Finally, the speech description taxonomy framework is developed, with the aim of characterizing various aspects of a degraded speech signal, including the mechanism that results in a signal with particular characteristics, the vocabulary that can be used to describe those degradations and the measurable signal properties that can characterize the degradations. The taxonomy is implemented as a relational database that facilitates the modeling of the relationships between various attributes of a signal and promises to be a useful tool for training and guiding audio analysts

    A decision-directed adaptive gain equalizer for assistive hearing instruments

    Get PDF
    Assistive hearing instruments have a significant impact on speech enhancement when the signal-to-noise ratio is low. These instruments are usually developed using the conventional adaptive gain equalizer (AGE), which has low computational complexity and low distortion in real-time speech enhancement. The conventional AGEs are intended to boost the speech segments of speech signals but they are incapable of suppressing noise segments. The overall speech quality of the assistive hearing instruments may be reduced, as the noise segments still cannot be filtered out. In this paper, a decision-directed AGE is proposed for assistive hearing instruments. It aims to overcome the limitation of the conventional AGE, which is capable only of boosting speech segments in noisy speech but incapable of suppressing noise segments. The proposed approach simultaneously boosts the speech segments and suppresses noise segments in noisy speech. Experimental results with different types of real-world noise indicate that the proposed method achieves better speech quality than does the conventional AGE. The resulting method provides an improved functionality for assistive hearing instruments

    Methods of Optimizing Speech Enhancement for Hearing Applications

    Get PDF
    Speech intelligibility in hearing applications suffers from background noise. One of the most effective solutions is to develop speech enhancement algorithms based on the biological traits of the auditory system. In humans, the medial olivocochlear (MOC) reflex, which is an auditory neural feedback loop, increases signal-in-noise detection by suppressing cochlear response to noise. The time constant is one of the key attributes of the MOC reflex as it regulates the variation of suppression over time. Different time constants have been measured in nonhuman mammalian and human auditory systems. Physiological studies reported that the time constant of nonhuman mammalian MOC reflex varies with the properties (e.g. frequency, bandwidth) changes of the stimulation. A human based study suggests that time constant could vary when the bandwidth of the noise is changed. Previous works have developed MOC reflex models and successfully demonstrated the benefits of simulating the MOC reflex for speech-in-noise recognition. However, they often used fixed time constants. The effect of the different time constants on speech perception remains unclear. The main objectives of the present study are (1) to study the effect of the MOC reflex time constant on speech perception in different noise conditions; (2) to develop a speech enhancement algorithm with dynamic time constant optimization to adapt to varying noise conditions for improving speech intelligibility. The first part of this thesis studies the effect of the MOC reflex time constants on speech-in-noise perception. Conventional studies do not consider the relationship between the time constants and speech perception as it is difficult to measure the speech intelligibility changes due to varying time constants in human subjects. We use a model to investigate the relationship by incorporating Meddis’ peripheral auditory model (which includes a MOC reflex) with an automatic speech recognition (ASR) system. The effect of the MOC reflex time constant is studied by adjusting the time constant parameter of the model and testing the speech recognition accuracy of the ASR. Different time constants derived from human data are evaluated in both speech-like and non-speech like noise at the SNR levels from -10 dB to 20 dB and clean speech condition. The results show that the long time constants (≄1000 ms) provide a greater improvement of speech recognition accuracy at SNR levels≀10 dB. Maximum accuracy improvement of 40% (compared to no MOC condition) is shown in pink noise at the SNR of 10 dB. Short time constants (<1000 ms) show recognition accuracy over 5% higher than the longer ones at SNR levels ≄15 dB. The second part of the thesis develops a novel speech enhancement algorithm based on the MOC reflex with a time constant that is dynamically optimized, according to a lookup table for varying SNRs. The main contributions of this part include: (1) So far, the existing SNR estimation methods are challenged in cases of low SNR, nonstationary noise, and computational complexity. High computational complexity would increase processing delay that causes intelligibility degradation. A variance of spectral entropy (VSE) based SNR estimation method is developed as entropy based features have been shown to be more robust in the cases of low SNR and nonstationary noise. The SNR is estimated according to the estimated VSE-SNR relationship functions by measuring VSE of noisy speech. Our proposed method has an accuracy of 5 dB higher than other methods especially in the babble noise with fewer talkers (2 talkers) and low SNR levels (< 0 dB), with averaging processing time only about 30% of the noise power estimation based method. The proposed SNR estimation method is further improved by implementing a nonlinear filter-bank. The compression of the nonlinear filter-bank is shown to increase the stability of the relationship functions. As a result, the accuracy is improved by up to 2 dB in all types of tested noise. (2) A modification of Meddis’ MOC reflex model with a time constant dynamically optimized against varying SNRs is developed. The model incudes simulated inner hair cell response to reduce the model complexity, and now includes the SNR estimation method. Previous MOC reflex models often have fixed time constants that do not adapt to varying noise conditions, whilst our modified MOC reflex model has a time constant dynamically optimized according to the estimated SNRs. The results show a speech recognition accuracy of 8 % higher than the model using a fixed time constant of 2000 ms in different types of noise. (3) A speech enhancement algorithm is developed based on the modified MOC reflex model and implemented in an existing hearing aid system. The performance is evaluated by measuring the objective speech intelligibility metric of processed noisy speech. In different types of noise, the proposed algorithm increases intelligibility at least 20% in comparison to unprocessed noisy speech at SNRs between 0 dB and 20 dB, and over 15 % in comparison to processed noisy speech using the original MOC based algorithm in the hearing aid

    Predicting Speech Intelligibility

    Get PDF
    Hearing impairment, and specifically sensorineural hearing loss, is an increasingly prevalent condition, especially amongst the ageing population. It occurs primarily as a result of damage to hair cells that act as sound receptors in the inner ear and causes a variety of hearing perception problems, most notably a reduction in speech intelligibility. Accurate diagnosis of hearing impairments is a time consuming process and is complicated by the reliance on indirect measurements based on patient feedback due to the inaccessible nature of the inner ear. The challenges of designing hearing aids to counteract sensorineural hearing losses are further compounded by the wide range of severities and symptoms experienced by hearing impaired listeners. Computer models of the auditory periphery have been developed, based on phenomenological measurements from auditory-nerve fibres using a range of test sounds and varied conditions. It has been demonstrated that auditory-nerve representations of vowels in normal and noisedamaged ears can be ranked by a subjective visual inspection of how the impaired representations differ from the normal. This thesis seeks to expand on this procedure to use full word tests rather than single vowels, and to replace manual inspection with an automated approach using a quantitative measure. It presents a measure that can predict speech intelligibility in a consistent and reproducible manner. This new approach has practical applications as it could allow speechprocessing algorithms for hearing aids to be objectively tested in early stage development without having to resort to extensive human trials. Simulated hearing tests were carried out by substituting real listeners with the auditory model. A range of signal processing techniques were used to measure the model’s auditory-nerve outputs by presenting them spectro-temporally as neurograms. A neurogram similarity index measure (NSIM) was developed that allowed the impaired outputs to be compared to a reference output from a normal hearing listener simulation. A simulated listener test was developed, using standard listener test material, and was validated for predicting normal hearing speech intelligibility in quiet and noisy conditions. Two types of neurograms were assessed: temporal fine structure (TFS) which retained spike timing information; and average discharge rate or temporal envelope (ENV). Tests were carried out to simulate a wide range of sensorineural hearing losses and the results were compared to real listeners’ unaided and aided performance. Simulations to predict speech intelligibility performance of NAL-RP and DSL 4.0 hearing aid fitting algorithms were undertaken. The NAL-RP hearing aid fitting algorithm was adapted using a chimaera sound algorithm which aimed to improve the TFS speech cues available to aided hearing impaired listeners. NSIM was shown to quantitatively rank neurograms with better performance than a relative mean squared error and other similar metrics. Simulated performance intensity functions predicted speech intelligibility for normal and hearing impaired listeners. The simulated listener tests demonstrated that NAL-RP and DSL 4.0 performed with similar speech intelligibility restoration levels. Using NSIM and a computational model of the auditory periphery, speech intelligibility can be predicted for both normal and hearing impaired listeners and novel hearing aids can be rapidly prototyped and evaluated prior to real listener tests

    Objective and Subjective Evaluation of Binaural Beamformers in Hearing Aids

    Get PDF
    Hearing aids use a variety of noise reduction techniques to enhance the experience of hearing impaired listeners. One of these techniques is beamforming, which typically aims to preserve sounds coming from the front of the user and suppresses those from the sides and back. Recently, hearing aids have begun employing a wireless connection between the left and right hearing aids in order to augment the directionality of the beamformers, called binaural beamformers. However, the effect of these binaural beamformers on perceived quality and intelligibility has not been thoroughly tested. This thesis investigated the benchmarking of hearing aids which utilize binaural beamforming algorithms using behavioural testing and computational models. Speech recordings from bilateral pairs of several popular hearing aids were obtained across different processing conditions, and in different noisy and reverberant environments. The quality of these recordings was evaluated subjectively by thirteen hearing impaired adults. In addition, computational predictors of perceived quality and intelligibility were extracted from the left and right hearing aid recordings. Objective and subjective analyses revealed that binaural beamforming has a generally positive effect on quality and intelligibility that was dependent on the directionality of the speech and noise. The ear recording with the better predicted quality score was also found to correlate better with the subjective quality ratings than the average of left and right ear predicted scores. A new weighting function that optimally combines the monaural computational metrics was developed, which was shown to be especially effective in environments where speech and/or noise sources are asymmetrically positioned
    • 

    corecore