846 research outputs found

    Solving high-order partial differential equations with indirect radial basis function networks

    Get PDF
    This paper reports a new numerical method based on radial basis function networks (RBFNs) for solving high-order partial differential equations (PDEs). The variables and their derivatives in the governing equations are represented by integrated RBFNs. The use of integration in constructing neural networks allows the straightforward implementation of multiple boundary conditions and the accurate approximation of high-order derivatives. The proposed RBFN method is verified successfully through the solution of thin-plate bending and viscous flow problems which are governed by biharmonic equations. For thermally driven cavity flows, the solutions are obtained up to a high Rayleigh number

    Two-field-variable meshless method based on moving kriging interpolation for solving simply supported thin plates under various loads

    Get PDF
    AbstractMeshless method choosing Heaviside step function as a test function for solving simply supported thin plates under various loads is presented in this paper. The shape functions using regular and irregular nodal distribution as well as order of polynomial basis choice are constructed by moving kriging interpolation. Alternatively, two-field-variable local weak forms are used in order to decompose the governing equation, biharmonic equation, into a couple of Poisson equations and then impose straightforward boundary conditions. Selected numerical examples are considered to examine the applicability, the easiness, and the accuracy of the proposed method. Comparing to an exact solution, this robust method gives significantly accurate numerical results, implementing by maximum relative error and root mean square relative error

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor
    • ā€¦
    corecore