33 research outputs found

    A systematic approach to circuit design and analysis: classification of Two-VCCS Circuits

    Get PDF
    This paper discusses a systematic approach to the design and analysis of circuits, using a transconductor or voltage controlled current source (VCCS) as a building block. It is shown that two independent Kirchhoff relations among the VCCS voltages and currents play a crucial role in establishing a unique transfer function in two-port circuits with two VCCSs. A class of two VCCS circuits is defined, which can be subdivided into three main classes and 14 subclasses, based on different imposable sets of two Kirchhoff relations. The classification is useful for circuit synthesis and analysis, as it reveals all the basically different ways to exploit two VCCS's, and allows for a unified analysis of classes of circuits. To exemplify this, all complementary metal-oxide-semiconductor (CMOS) V-I converter kernels, based on two matched MOS transistor (MOST)-VCCSs, are generated and analyzed with respect to distortion. It is shown that dozens of published transconductor circuits can be classified in only four classes, with essentially different distortion behavio

    Systematic Comparison of HF CMOS Transconductors

    Get PDF
    Transconductors are commonly used as active elements in high-frequency (HF) filters, amplifiers, mixers, and oscillators. This paper reviews transconductor design by focusing on the V-I kernel that determines the key transconductor properties. Based on bandwidth considerations, simple V-I kernels with few or no internal nodes are preferred. In a systematic way, virtually all simple kernels published in literature are generated. This is done in two steps: 1) basic 3-terminal transconductors are covered and 2) then five different techniques to combine two of them in a composite V-I kernel. In order to compare transconductors in a fair way, a normalized signal-to-noise ratio (NSNR) is defined. The basic V-I kernels and the five classes of composite V-I kernels are then compared, leading to insight in the key mechanisms that affect NSNR. Symbolic equations are derived to estimate NSNR, while simulations with more advanced MOSFET models verify the results. The results show a strong tradeoff between NSNR and transconductance tuning range. Resistively generated MOSFETs render the best NSNR results and are robust for future technology developments

    Automatic tuning for linearly tunable filter

    Get PDF
    A new tuning scheme for linearly tunable high-Q filters is proposed. The tuning method is based on using the phase information for both frequency and Q factor tuning. There is no need to find out the relationship between a filter's passband magnitude and Q. A gm-C biquadratic filter is designed to demonstrate the proposed tuning circuitry. The project includes a phase locked loop (PLL) based frequency tuning loop, reference clock generator, and differential difference amplifier (DDA) for dealing with frequency and Q factor tuning loop and linearly tunable second order gm-C bandpass filter. Simulation results for a 10 MHz prototype filter using AMI 0.5μm process is presented. The chip testing results show that the automatic frequency tuning error is 2.5% for the 10 MHz case

    Ultra Low Power Amplification and Digitization System for Neural Signal Recording Applications

    Get PDF
    The scope is to develop a tunable low power fully integrated bandpass filter and a low power second order sigma-delta ADC modulator for implantable neural signal amplification and digitization applications, with subthreshold circuit design techniques in different CMOS processes. Since biopotentials usually contain low frequency components, the neural filters in this project have to be able to achieve large and predictable time constant for implantable applications. Voltage biased pseudo-resistors are vulnerable to process variations and circuit imperfections, and hence not suitable for implantable applications. A current biased pseudo-resistor is implemented in the neural filters in this work to set the cutoff frequency, and a Taylor series is used to study its linearity. The filters with proposed current biased pseudo-resistors were fabricated in two different CMOS processes and tested. The test results verify that the filters with current biased pseudo-resistors are tunable, and not vulnerable to process variations and circuit imperfections. The filters with current biased pseudo-resistors meet the design requirements of fully integrated, implantable applications. The sigma-delta ADC modulator was designed and simulated in a half micron SOS CMOS process. The simulation results of the ADC confirm the possibility of an ultra low power ADC for neural signal recording applications.School of Electrical & Computer Engineerin

    A systematic approach to circuit design and analysis: classification of two-VCCS circuits

    Full text link

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Floating-Gate Design and Linearization for Reconfigurable Analog Signal Processing

    Get PDF
    Analog and mixed-signal integrated circuits have found a place in modern electronics design as a viable alternative to digital pre-processing. With metrics that boast high accuracy and low power consumption, analog pre-processing has opened the door to low-power state-monitoring systems when it is utilized in place of a power-hungry digital signal-processing stage. However, the complicated design process required by analog and mixed-signal systems has been a barrier to broader applications. The implementation of floating-gate transistors has begun to pave the way for a more reasonable approach to analog design. Floating-gate technology has widespread use in the digital domain. Analog and mixed-signal use of floating-gate transistors has only become a rising field of study in recent years. Analog floating gates allow for low-power implementation of mixed-signal systems, such as the field-programmable analog array, while simultaneously opening the door to complex signal-processing techniques. The field-programmable analog array, which leverages floating-gate technologies, is demonstrated as a reliable replacement to signal-processing tasks previously only solved by custom design. Living in an analog world demands the constant use and refinement of analog signal processing for the purpose of interfacing with digital systems. This work offers a comprehensive look at utilizing floating-gate transistors as the core element for analog signal-processing tasks. This work demonstrates the floating gate\u27s merit in large reconfigurable array-driven systems and in smaller-scale implementations, such as linearization techniques for oscillators and analog-to-digital converters. A study on analog floating-gate reliability is complemented with a temperature compensation scheme for implementing these systems in ever-changing, realistic environments

    Low-Power Reconfigurable Sensing Circuitry for the Internet-of-Things Paradigm

    Get PDF
    With ubiquitous wireless communication via Wi-Fi and nascent 5th Generation mobile communications, more devices -- both smart and traditionally dumb -- will be interconnected than ever before. This burgeoning trend is referred to as the Internet-of-Things. These new sensing opportunities place a larger burden on the underlying circuitry that must operate on finite battery power and/or within energy-constrained environments. New developments of low-power reconfigurable analog sensing platforms like field-programmable analog arrays (FPAAs) present an attractive sensing solution by processing data in the analog domain while staying flexible in design. This work addresses some of the contemporary challenges of low-power wireless sensing via traditional application-specific sensing and with FPAAs. A large emphasis is placed on furthering the development of FPAAs by making them more accessible to designers without a strong integrated-circuit background -- much like FPGAs have done for digital designers

    An analog approach to interference suppression in ultra-wideband receivers

    Get PDF
    Because of the huge bandwidth of Ultra-Wideband (UWB) systems, in-band narrowband interference may hinder receiver performance. In this dissertation, sources of potential narrowband interference that lie within the IEEE 802.15.3a UWB bandwidth are presented, and a solution is proposed. To combat interference in Multi-Band OFDM (MB-OFDM) UWB systems, an analog notch filter is designed to be included in the UWB receive chain. The architecture of the filter is based on feed-forward subtraction of the interference, and includes a Least Means Squared (LMS) tuning scheme to maximize attenuation. The filter uses the Fast Fourier Transform (FFT) result for interference detection and discrete center frequency tuning of the filter. It was fabricated in a 0.18 õm process, and experimental results are provided. This is the first study of potential in-band interference sources for UWB. The proposed filter offers a practical means for ensuring reliable UWB communication in the presense of such interference. The Operational Transconductance Amplifier (OTA) is the predominant building block in the design of the notch filter. In many cases, OTAs must handle input signals with large common mode swings. A new scheme for achieving rail-to-rail input to an OTA is introduced. Constant gm is obtained by using tunable level shifters and a single differential pair. Feedback circuitry controls the level shifters in a manner that fixes the common mode input of the differential pair, resulting in consistent and stable operation for rail-to-rail inputs. As the new technique avoids using complimentary input differential pairs, this method overcomes problems such as Common Mode Rejection Ratio (CMRR) and Gain Bandwidth (GBW) product degradation that exist in many other designs. The circuit was fabricated in a 0.5õm process. The resulting differential pair had a constant transconductance that varied by only ñ0.35% for rail-to-rail input common mode levels. The input common mode range extended well past the supply levels of ñ1.5V, resulting in only ñ1% fluctuation in gm for input common modes from -2V to 2V

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings
    corecore