244,127 research outputs found

    A new contextual based feature selection.

    No full text
    International audienceThe pre processing phase is essential in Knowledge Data Discovery process. We study too particularly the data filtering in supervised context, and more precisely the feature selection. Our objective is to permit a better use of the data set. Most of filtering use myopic measures, and give bad results in the case of the features correlated part by part. Consequently in the first time, we build two new contextual criteria. In the second par, we introduce those criteria in an algorithm similar to the greedy algorithm. The algorithm is tested on a set of benchmarks and the results were compared with five reference algorithms : Relief, CFS, Wrapper (C4.5), consistancySubsetEval and GainRatio. Our experiments have shown its ability to detect the semi-correlated features. We conduct extensive experiments by using our algorithm like pre processing data for decision tree, nearest neighbours and Naïve Bays classifiers

    Understanding The Use Of Feature Films To Maximize Student Learning

    Get PDF
    Feature films, old and new, have been used for many years to teach management education in general and leadership skills in particular. Films are often able to affect not only our emotional responses and perceptions of events, but they can also have an impact on our personal lives over long periods of time. Although anecdotal evidence (primarily based upon Social Learning Theory) has generally supported the use of feature films to teach management education, the paper draws upon theoretical advances in universalistic self-theory as part of cognitive-experiential self-theory (CEST) as an epistemological basis for why and under what specific conditions management educators should use feature films to maximize student learning. From this reasoning, the paper proposes that management educators apply contextual self-theory as a pedagogical guide for the actual selection of films for classroom use. In addition, the paper highlights the importance of how the management educator needs to look at other factors, such as the age and cultural background of students, as important considerations for the selection and use of feature films in the classroom

    Improvements on Deep Bottleneck Network based I-Vector Representation for Spoken Language Identification

    Get PDF
    Recently, the i-vector representation based on deep bottleneck networks (DBN) pre-trained for automatic speech recognition has received significant interest for both speaker verification (SV) and language identification (LID). In particular, a recent unified DBN based i-vector framework, referred to as DBN-pGMM i-vector, has performed well. In this paper, we replace the pGMM with a phonetic mixture of factor analyzers (pMFA), and propose a new DBN-pMFA i-vector. The DBN-pMFA i-vector includes the following improvements: (i) a pMFA model is derived from the DBN, which can jointly perform feature dimension reduction and de-correlation in a single linear transformation, (ii) a shifted DBF, termed SDBF, is proposed to exploit the temporal contextual information, (iii) a senone selection scheme is proposed to improve the i-vector extraction efficiently. We evaluate the proposed DBN-pMFA i-vector on the most confused six languages selected from NIST LRE 2009. The experimental results demonstrate that DBN-pMFA can consistently outperform the previous DBN based framework. The computational complexity can be significantly reduced by applying a simple senone selection scheme

    Tutoring Students with Adaptive Strategies

    Get PDF
    Adaptive learning is a crucial part in intelligent tutoring systems. It provides students with appropriate tutoring interventions, based on students’ characteristics, status, and other related features, in order to optimize their learning outcomes. It is required to determine students’ knowledge level or learning progress, based on which it then uses proper techniques to choose the optimal interventions. In this dissertation work, I focus on these aspects related to the process in adaptive learning: student modeling, k-armed bandits, and contextual bandits. Student modeling. The main objective of student modeling is to develop cognitive models of students, including modeling content skills and knowledge about learning. In this work, we investigate the effect of prerequisite skill in predicting students’ knowledge in post skills, and we make use of the prerequisite performance in different student models. As a result, this makes them superior to traditional models. K-armed bandits. We apply k-armed bandit algorithms to personalize interventions for students, to optimize their learning outcomes. Due to the lack of diverse interventions and small difference of intervention effectiveness in educational experiments, we also propose a simple selection strategy, and compare it with several k-armed bandit algorithms. Contextual bandits. In contextual bandit problem, additional side information, also called context, can be used to determine which action to select. First, we construct a feature evaluation mechanism, which determines which feature to be combined with bandits. Second, we propose a new decision tree algorithm, which is capable of detecting aptitude treatment effect for students. Third, with combined bandits with the decision tree, we apply the contextual bandits to make personalization in two different types of data, simulated data and real experimental data

    Context based mixture model for cell phase identification in automated fluorescence microscopy

    Get PDF
    BACKGROUND: Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. RESULTS: The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Maximum Margin Criterion (MMC), Stepwise Discriminate Analysis based Feature Selection (SDAFS), and Genetic Algorithm based Feature Selection (GAFS). Then, we propose a Context Based Mixture Model (CBMM) for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM), Neural Network (NN), and K-Nearest Neighbor (KNN). Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The experimental results show that CBMM outperforms all other classifies in identifying prophase and has the best overall performance. CONCLUSION: The application of feature reduction techniques can improve the prediction accuracy significantly. CBMM can effectively utilize the contextual information and has the best overall performance when combined with any of the previously mentioned feature reduction techniques

    The management of context-sensitive features: A review of strategies

    Get PDF
    In this paper, we review five heuristic strategies for handling context- sensitive features in supervised machine learning from examples. We discuss two methods for recovering lost (implicit) contextual information. We mention some evidence that hybrid strategies can have a synergetic effect. We then show how the work of several machine learning researchers fits into this framework. While we do not claim that these strategies exhaust the possibilities, it appears that the framework includes all of the techniques that can be found in the published literature on context-sensitive learning

    Cortical Dynamics of Contextually-Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Full text link
    How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR0011-09-3-0001, HR0011-09-C-0011
    • …
    corecore