126 research outputs found

    Challenges in flexible microsystem manufacturing : fabrication, robotic assembly, control, and packaging.

    Get PDF
    Microsystems have been investigated with renewed interest for the last three decades because of the emerging development of microelectromechanical system (MEMS) technology and the advancement of nanotechnology. The applications of microrobots and distributed sensors have the potential to revolutionize micro and nano manufacturing and have other important health applications for drug delivery and minimal invasive surgery. A class of microrobots studied in this thesis, such as the Solid Articulated Four Axis Microrobot (sAFAM) are driven by MEMS actuators, transmissions, and end-effectors realized by 3-Dimensional MEMS assembly. Another class of microrobots studied here, like those competing in the annual IEEE Mobile Microrobot Challenge event (MMC) are untethered and driven by external fields, such as magnetic fields generated by a focused permanent magnet. A third class of microsystems studied in this thesis includes distributed MEMS pressure sensors for robotic skin applications that are manufactured in the cleanroom and packaged in our lab. In this thesis, we discuss typical challenges associated with the fabrication, robotic assembly and packaging of these microsystems. For sAFAM we discuss challenges arising from pick and place manipulation under microscopic closed-loop control, as well as bonding and attachment of silicon MEMS microparts. For MMC, we discuss challenges arising from cooperative manipulation of microparts that advance the capabilities of magnetic micro-agents. Custom microrobotic hardware configured and demonstrated during this research (such as the NeXus microassembly station) include micro-positioners, microscopes, and controllers driven via LabVIEW. Finally, we also discuss challenges arising in distributed sensor manufacturing. We describe sensor fabrication steps using clean-room techniques on Kapton flexible substrates, and present results of lamination, interconnection and testing of such sensors are presented

    Light driven robots - flare launching autonomous swimming hydrobot (FLASH)

    Get PDF

    Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots

    Get PDF
    We present control strategies that implement planar microassembly using groups of stress-engineered MEMS microrobots (MicroStressBots) controlled through a single global control signal. The global control signal couples the motion of the devices, causing the system to be highly underactuated. In order for the robots to assemble into arbitrary planar shapes despite the high degree of underactuation, it is desirable that each robot be independently maneuverable (independently controllable). To achieve independent control, we fabricated robots that behave (move) differently from one another in response to the same global control signal. We harnessed this differentiation to develop assembly control strategies, where the assembly goal is a desired geometric shape that can be obtained by connecting the chassis of individual robots. We derived and experimentally tested assembly plans that command some of the robots to make progress toward the goal, while other robots are constrained to remain in small circular trajectories (orbits) until it is their turn to move into the goal shape. Our control strategies were tested on systems of fabricated MicroStressBots. The robots are 240–280 µm × 60 µm × 7–20 µm in size and move simultaneously within a single operating environment. We demonstrated the feasibility of our control scheme by accurately assembling five different types of planar microstructures

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBot,a stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    An Untethered Miniature Origami Robot that Self-folds, Walks, Swims, and Degrades

    Get PDF
    A miniature robotic device that can fold-up on the spot, accomplish tasks, and disappear by degradation into the environment promises a range of medical applications but has so far been a challenge in engineering. This work presents a sheet that can self-fold into a functional 3D robot, actuate immediately for untethered walking and swimming, and subsequently dissolve in liquid. The developed sheet weighs 0.31g, spans 1.7cm square in size, features a cubic neodymium magnet, and can be thermally activated to self-fold. Since the robot has asymmetric body balance along the sagittal axis, the robot can walk at a speed of 3.8 body-length/s being remotely controlled by an alternating external magnetic field. We further show that the robot is capable of conducting basic tasks and behaviors, including swimming, delivering/carrying blocks, climbing a slope, and digging. The developed models include an acetone-degradable version, which allows the entire robot’s body to vanish in a liquid. We thus experimentally demonstrate the complete life cycle of our robot: self-folding, actuation, and degrading.National Science Foundation (U.S.) (Grant 1240383)National Science Foundation (U.S.) (Grant 1138967)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    MRI-Based Communication with Untethered Intelligent Medical Microrobots

    Get PDF
    RESUME Les champs magnétiques présent dans un système clinique d’Imagerie par Résonance Magnétique (IRM) peuvent être exploités non seulement, afin d’induire une force de déplacement sur des microrobots magnétiques tout en permettant l’asservissement de leur position - une technique connue sous le nom de Navigation par Résonance Magnétique (NRM), mais aussi pour mettre en œuvre un procédé de communication. Pour des microrobots autonomes équipés de senseurs ayant un certain niveau d'intelligence et opérant à l'intérieur du corps humain, la puissance de transmission nécessaire pour communiquer des informations à un ordinateur externe par des méthodes présentement connues est insuffisante. Dans ce travail, une technique est décrite où une telle perte de puissance d'émission en raison de la mise à l'échelle de ces microrobots peut être compensée par le scanner IRM agissant aussi comme un récepteur très sensible. La technique de communication prend la forme d'une modification de la fréquence du courant électrique circulant le long d'une bobine miniature incorporé dans un microrobot. La fréquence du courant électrique peut être réglée à partir d'une entrée de seuil prédéterminée du senseur mis en place sur le microrobot. La fréquence devient alors corrélée à l’information de l’état du senseur recueilli par le microrobot et elle est déterminée en utilisant l'IRM. La méthode proposée est indépendante de la position et l'orientation du microrobot et peut être étendue à un grand nombre de microrobots pour surveiller et cartographier les conditions physiologiques spécifiques dans une région plus vaste à n’importe quelle profondeur à l'intérieur du corps.----------ABSTRACT The magnetic environment provided by a clinical Magnetic Resonance Imaging (MRI) scanner can be exploited to not only induce a displacement force on magnetic microrobots while allowing MR-tracking for serving control purpose or positional assessment - a technique known as Magnetic Resonance Navigation (MRN), but also for implementing a method of communication with intelligent microrobots. For untethered sensory microrobots having some level of intelligence and operating inside the body, the transmission power necessary to communicate information to an external computer via known methods is insufficient. In this work, a technique is described where such loss of transmission power due to the scaling of these microrobots can be compensated by the same MRI scanner acting as a more sensitive receiver. A communication scheme is implemented in the form of a frequency alteration in the electrical current circulating along a miniature coil embedded in a microrobot. The frequency of the electrical current could be regulated from a predetermined sensory threshold input implemented on the microrobot. Such a frequency provides information on the level of sensory information gathered by the microrobot, and it is determined using MR imaging. The proposed method is independent of the microrobot's position and orientation and can be extended to a larger number of microrobots for monitoring and mapping specific physiological conditions inside a larger region at any depths within the body

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic \microrobots" and magnetically actuated capsuleendoscopes, motivated by problems in minimally invasive medicine. This dissertationfocuses on applying rotating magnetic elds for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimicthe propulsion of bacterial agella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be dierentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet

    Microdispositivos:: herramientas para aplicaciones médicas

    Get PDF
    Abstract: This article reviews the literature on the latest advances in microdevices for medical applications. The objective is to show an overview of the latest devices and their applications, as well as future development vectors in the area. A search of about 170 articles was performed, most of them published between the years 2015 and 2021, of which 53 were chosen as they were the most topical and impactful in the research fields referred to drug delivery, minimally invasive surgery, and cranial and vascular intromissions. It is concluded that, although microdevices are at an advanced stage of research, they still have many challenges to be solved, which has not allowed clinical trials to be completed in many cases. One of the great challenges ahead is to increase the precision in locomotion and to make the devices capable of performing more complex tasks with the help of smaller-scale electronic devices.Resumen: El presente artículo realiza una revisión de la literatura sobre los últimos avances en cuanto a los micro dispositivos para aplicaciones médicas. El objetivo es mostrar un panorama general de los últimos dispositivos y sus aplicaciones, así como los futuros vectores de desarrollo en el área. Se realizó una búsqueda de alrededor de 170 artículos, la mayoría de ellos publicados entre los años 2015 y 2021, de los cuales se eligieron 53 al ser los de mayor actualidad e impacto en los campos de investigación referidos a la administración de fármacos, la cirugía mínimamente invasiva, y las intromisiones craneales y vasculares. Se concluye que, si bien los micro dispositivos están en una etapa avanzada de investigación, aún tienen muchos desafíos por solucionar, lo cual no ha permitido completar en muchos casos las pruebas clínicas. Uno de los grandes desafíos futuros es incrementar la precisión en locomoción y conseguir que los dispositivos puedan realizar tareas más complejas con ayuda de dispositivos electrónicos de menor escala
    • …
    corecore