8,815 research outputs found

    Color Constancy Using CNNs

    Full text link
    In this work we describe a Convolutional Neural Network (CNN) to accurately predict the scene illumination. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one convolutional layer with max pooling, one fully connected layer and three output nodes. Within the network structure, feature learning and regression are integrated into one optimization process, which leads to a more effective model for estimating scene illumination. This approach achieves state-of-the-art performance on a standard dataset of RAW images. Preliminary experiments on images with spatially varying illumination demonstrate the stability of the local illuminant estimation ability of our CNN.Comment: Accepted at DeepVision: Deep Learning in Computer Vision 2015 (CVPR 2015 workshop

    Pixelated Semantic Colorization

    Get PDF
    While many image colorization algorithms have recently shown the capability of producing plausible color versions from gray-scale photographs, they still suffer from limited semantic understanding. To address this shortcoming, we propose to exploit pixelated object semantics to guide image colorization. The rationale is that human beings perceive and distinguish colors based on the semantic categories of objects. Starting from an autoregressive model, we generate image color distributions, from which diverse colored results are sampled. We propose two ways to incorporate object semantics into the colorization model: through a pixelated semantic embedding and a pixelated semantic generator. Specifically, the proposed convolutional neural network includes two branches. One branch learns what the object is, while the other branch learns the object colors. The network jointly optimizes a color embedding loss, a semantic segmentation loss and a color generation loss, in an end-to-end fashion. Experiments on PASCAL VOC2012 and COCO-stuff reveal that our network, when trained with semantic segmentation labels, produces more realistic and finer results compared to the colorization state-of-the-art
    corecore