175 research outputs found

    Scattering Amplitudes and Toric Geometry

    Get PDF
    In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined finite objects called on-shell diagrams drawn on disks. Furthermore it has been shown that the physical information of on-shell diagrams is encoded in the geometry of auxiliary algebraic varieties called the totally non negative Grassmannians. In this new formulation the infinite dimensional symmetry of the theory is manifest and many results, that are quite tricky to obtain in terms of the standard Lagrangian formulation of the theory, are instead manifest. In this paper, elaborating on previous results, we provide another picture of the scattering amplitudes in terms of toric geometry. In particular we describe in detail the toric varieties associated to an on-shell diagram, how the singularities of the amplitudes are encoded in some subspaces of the toric variety, and how this picture maps onto the Grassmannian description. Eventually we discuss the action of cluster transformations on the toric varieties. The hope is to provide an alternative description of the scattering amplitudes that could contribute in the developing of this very interesting field of research.Comment: 58 pages, 25 figures, typos corrected, a reference added, to be published in JHE

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Inside-Out Polytopes

    Get PDF
    We present a common generalization of counting lattice points in rational polytopes and the enumeration of proper graph colorings, nowhere-zero flows on graphs, magic squares and graphs, antimagic squares and graphs, compositions of an integer whose parts are partially distinct, and generalized latin squares. Our method is to generalize Ehrhart's theory of lattice-point counting to a convex polytope dissected by a hyperplane arrangement. We particularly develop the applications to graph and signed-graph coloring, compositions of an integer, and antimagic labellings.Comment: 24 pages, 3 figures; to appear in Adv. Mat

    Some upper and lower bounds on PSD-rank

    Get PDF
    Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bounds on the PSD-rank. All of these bounds are based on viewing a positive semidefinite factorization of a matrix MM as a quantum communication protocol. These lower bounds depend on the entries of the matrix and not only on its support (the zero/nonzero pattern), overcoming a limitation of some previous techniques. We compare these new lower bounds with known bounds, and give examples where the new ones are better. As an application we determine the PSD-rank of (approximations of) some common matrices.Comment: 21 page

    Displacing Lagrangian toric fibers by extended probes

    Full text link
    In this paper we introduce a new way of displacing Lagrangian fibers in toric symplectic manifolds, a generalization of McDuff's original method of probes. Extended probes are formed by deflecting one probe by another auxiliary probe. Using them, we are able to displace all fibers in Hirzebruch surfaces except those already known to be nondisplaceable, and can also displace an open dense set of fibers in the weighted projective space P(1,3,5) after resolving the singularities. We also investigate the displaceability question in sectors and their resolutions. There are still many cases in which there is an open set of fibers whose displaceability status is unknown.Comment: 53 pages, 26 figures; v3: minor corrections and updated references. To appear in Algebraic & Geometric Topolog

    Planar 3-dimensional assignment problems with Monge-like cost arrays

    Get PDF
    Given an n×n×pn\times n\times p cost array CC we consider the problem pp-P3AP which consists in finding pp pairwise disjoint permutations φ1,φ2,…,φp\varphi_1,\varphi_2,\ldots,\varphi_p of {1,…,n}\{1,\ldots,n\} such that ∑k=1p∑i=1nciφk(i)k\sum_{k=1}^{p}\sum_{i=1}^nc_{i\varphi_k(i)k} is minimized. For the case p=np=n the planar 3-dimensional assignment problem P3AP results. Our main result concerns the pp-P3AP on cost arrays CC that are layered Monge arrays. In a layered Monge array all n×nn\times n matrices that result from fixing the third index kk are Monge matrices. We prove that the pp-P3AP and the P3AP remain NP-hard for layered Monge arrays. Furthermore, we show that in the layered Monge case there always exists an optimal solution of the pp-3PAP which can be represented as matrix with bandwidth ≤4p−3\le 4p-3. This structural result allows us to provide a dynamic programming algorithm that solves the pp-P3AP in polynomial time on layered Monge arrays when pp is fixed.Comment: 16 pages, appendix will follow in v
    • …
    corecore