1,373 research outputs found

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer 1\ell \ge 1 the problem of finding a minimum weight maximal distance-22\ell matching and the problem of finding a minimum weight (21)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of δlnV(G)\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where δ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    On strongly chordal graphs that are not leaf powers

    Full text link
    A common task in phylogenetics is to find an evolutionary tree representing proximity relationships between species. This motivates the notion of leaf powers: a graph G = (V, E) is a leaf power if there exist a tree T on leafset V and a threshold k such that uv is an edge if and only if the distance between u and v in T is at most k. Characterizing leaf powers is a challenging open problem, along with determining the complexity of their recognition. This is in part due to the fact that few graphs are known to not be leaf powers, as such graphs are difficult to construct. Recently, Nevries and Rosenke asked if leaf powers could be characterized by strong chordality and a finite set of forbidden subgraphs. In this paper, we provide a negative answer to this question, by exhibiting an infinite family \G of (minimal) strongly chordal graphs that are not leaf powers. During the process, we establish a connection between leaf powers, alternating cycles and quartet compatibility. We also show that deciding if a chordal graph is \G-free is NP-complete, which may provide insight on the complexity of the leaf power recognition problem

    The Price of Connectivity for Vertex Cover

    Full text link
    The vertex cover number of a graph is the minimum number of vertices that are needed to cover all edges. When those vertices are further required to induce a connected subgraph, the corresponding number is called the connected vertex cover number, and is always greater or equal to the vertex cover number. Connected vertex covers are found in many applications, and the relationship between those two graph invariants is therefore a natural question to investigate. For that purpose, we introduce the {\em Price of Connectivity}, defined as the ratio between the two vertex cover numbers. We prove that the price of connectivity is at most 2 for arbitrary graphs. We further consider graph classes in which the price of connectivity of every induced subgraph is bounded by some real number tt. We obtain forbidden induced subgraph characterizations for every real value t3/2t \leq 3/2. We also investigate critical graphs for this property, namely, graphs whose price of connectivity is strictly greater than that of any proper induced subgraph. Those are the only graphs that can appear in a forbidden subgraph characterization for the hereditary property of having a price of connectivity at most tt. In particular, we completely characterize the critical graphs that are also chordal. Finally, we also consider the question of computing the price of connectivity of a given graph. Unsurprisingly, the decision version of this question is NP-hard. In fact, we show that it is even complete for the class Θ2P=PNP[log]\Theta_2^P = P^{NP[\log]}, the class of decision problems that can be solved in polynomial time, provided we can make O(logn)O(\log n) queries to an NP-oracle. This paves the way for a thorough investigation of the complexity of problems involving ratios of graph invariants.Comment: 19 pages, 8 figure
    corecore