29 research outputs found

    A new cascaded spectral subtraction approach for binaural speech dereverberation and its application in source separation

    Get PDF
    In this work we propose a new binaural spectral subtraction method for the suppression of late reverberation. The pro- posed approach is a cascade of three stages. The first two stages exploit distinct observations to model and suppress the late reverberation by deriving a gain function. The musical noise artifacts generated due to the processing at each stage are compensated by smoothing the spectral magnitudes of the weighting gains. The third stage linearly combines the gains obtained from the first two stages and further enhances the binaural signals. The binaural gains, obtained by indepen- dently processing the left and right channel signals are com- bined using a new method. Experiments on real data are per- formed in two contexts: dereverberation-only and joint dere- verberation and source separation. Objective results verify the suitability of the proposed cascaded approach in both the contexts

    Informed algorithms for sound source separation in enclosed reverberant environments

    Get PDF
    While humans can separate a sound of interest amidst a cacophony of contending sounds in an echoic environment, machine-based methods lag behind in solving this task. This thesis thus aims at improving performance of audio separation algorithms when they are informed i.e. have access to source location information. These locations are assumed to be known a priori in this work, for example by video processing. Initially, a multi-microphone array based method combined with binary time-frequency masking is proposed. A robust least squares frequency invariant data independent beamformer designed with the location information is utilized to estimate the sources. To further enhance the estimated sources, binary time-frequency masking based post-processing is used but cepstral domain smoothing is required to mitigate musical noise. To tackle the under-determined case and further improve separation performance at higher reverberation times, a two-microphone based method which is inspired by human auditory processing and generates soft time-frequency masks is described. In this approach interaural level difference, interaural phase difference and mixing vectors are probabilistically modeled in the time-frequency domain and the model parameters are learned through the expectation-maximization (EM) algorithm. A direction vector is estimated for each source, using the location information, which is used as the mean parameter of the mixing vector model. Soft time-frequency masks are used to reconstruct the sources. A spatial covariance model is then integrated into the probabilistic model framework that encodes the spatial characteristics of the enclosure and further improves the separation performance in challenging scenarios i.e. when sources are in close proximity and when the level of reverberation is high. Finally, new dereverberation based pre-processing is proposed based on the cascade of three dereverberation stages where each enhances the twomicrophone reverberant mixture. The dereverberation stages are based on amplitude spectral subtraction, where the late reverberation is estimated and suppressed. The combination of such dereverberation based pre-processing and use of soft mask separation yields the best separation performance. All methods are evaluated with real and synthetic mixtures formed for example from speech signals from the TIMIT database and measured room impulse responses

    On enhancing model-based expectation maximization source separation in dynamic reverberant conditions using automatic Clifton effect

    Full text link
    [EN] Source separation algorithms based on spatial cues generally face two major problems. The first one is their general performance degradation in reverberant environments and the second is their inability to differentiate closely located sources due to similarity of their spatial cues. The latter problem gets amplified in highly reverberant environments as reverberations have a distorting effect on spatial cues. In this paper, we have proposed a separation algorithm, in which inside an enclosure, the distortions due to reverberations in a spatial cue based source separation algorithm namely model-based expectation-maximization source separation and localization (MESSL) are minimized by using the Precedence effect. The Precedence effect acts as a gatekeeper which restricts the reverberations entering the separation system resulting in its improved separation performance. And this effect is automatically transformed into the Clifton effect to deal with the dynamic acoustic conditions. Our proposed algorithm has shown improved performance over MESSL in all kinds of reverberant conditions including closely located sources. On average, 22.55% improvement in SDR (signal to distortion ratio) and 15% in PESQ (perceptual evaluation of speech quality) is observed by using the Clifton effect to tackle dynamic reverberant conditions.This project is funded by Higher Education Commission (HEC), Pakistan, under project no. 6330/KPK/NRPU/R&D/HEC/2016.Gul, S.; Khan, MS.; Shah, SW.; Lloret, J. (2020). On enhancing model-based expectation maximization source separation in dynamic reverberant conditions using automatic Clifton effect. International Journal of Communication Systems. 33(3):1-18. https://doi.org/10.1002/dac.421011833

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes
    corecore