2,467 research outputs found

    Performance and policy dimensions in internet routing

    Get PDF
    The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary

    Advanced tracking systems design and analysis

    Get PDF
    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk

    Performance measurement methodology for integrated services networks

    Get PDF
    With the emergence of advanced integrated services networks, the need for effective performance analysis techniques has become extremely important. Further advancements in these networks can only be possible if the practical performance issues of the existing networks are clearly understood. This thesis is concerned with the design and development of a measurement system which has been implemented on a large experimental network. The measurement system is based on dedicated traffic generators which have been designed and implemented on the Project Unison network. The Unison project is a multisite networking experiment for conducting research into the interconnection and interworking of local area network based multi-media application systems. The traffic generators were first developed for the Cambridge Ring based Unison network. Once their usefulness and effectiveness was proven, high performance traffic generators using transputer technology were built for the Cambridge Fast Ring based Unison network. The measurement system is capable of measuring the conventional performance parameters such as throughput and packet delay, and is able to characterise the operational performance of network bridging components under various loading conditions. In particular, the measurement system has been used in a 'measure and tune' fashion in order to improve the performance of a complex bridging device. Accurate measurement of packet delay in wide area networks is a recognised problem. The problem is associated with the synchronisation of the clocks between the distant machines. A chronological timestamping technique has been introduced in which the clocks are synchronised using a broadcast synchronisation technique. Rugby time clock receivers have been interfaced to each generator for the purpose of synchronisation. In order to design network applications, an accurate knowledge of the expected network performance under different loading conditions is essential. Using the measurement system, this has been achieved by examining the network characteristics at the network/user interface. Also, the generators are capable of emulating a variety of application traffic which can be injected into the network along with the traffic from real applications, thus enabling user oriented performance parameters to be evaluated in a mixed traffic environment. A number of performance measurement experiments have been conducted using the measurement system. Experimental results obtained from the Unison network serve to emphasise the power and effectiveness of the measurement methodology

    gLAB upgrade with BeiDou navigation system signals

    Get PDF
    The gLAB tool suit is an educational and professional multipurpose GNSS data processing software. It has been developed by gAGE/UPC under a contract of the European Space Agency (ESA). The current version of gLAB allows full GPS data processing with High Accuracy Positioning capability (at the centimetre level), but only a very limited data handling of Galileo and GLONASS. The Chinese Global Satellite Navigation System Beidou was not included in the initial requirements of ESA. The target of this project is to upgrade gLAB with the necessary functions to allow this software to compute user solutions with the Beidou signals

    A High Speed Networked Signal Processing Platform for Multi-element Radio Telescopes

    Get PDF
    A new architecture is presented for a Networked Signal Processing System (NSPS) suitable for handling the real-time signal processing of multi-element radio telescopes. In this system, a multi-element radio telescope is viewed as an application of a multi-sensor, data fusion problem which can be decomposed into a general set of computing and network components for which a practical and scalable architecture is enabled by current technology. The need for such a system arose in the context of an ongoing program for reconfiguring the Ooty Radio Telescope (ORT) as a programmable 264-element array, which will enable several new observing capabilities for large scale surveys on this mature telescope. For this application, it is necessary to manage, route and combine large volumes of data whose real-time collation requires large I/O bandwidths to be sustained. Since these are general requirements of many multi-sensor fusion applications, we first describe the basic architecture of the NSPS in terms of a Fusion Tree before elaborating on its application for the ORT. The paper addresses issues relating to high speed distributed data acquisition, Field Programmable Gate Array (FPGA) based peer-to-peer networks supporting significant on-the fly processing while routing, and providing a last mile interface to a typical commodity network like Gigabit Ethernet. The system is fundamentally a pair of two co-operative networks, among which one is part of a commodity high performance computer cluster and the other is based on Commercial-Off The-Shelf (COTS) technology with support from software/firmware components in the public domain.Comment: 19 pages, 4 eps figures, To be published in Experimental Astronomy (Springer

    Delay measurements In live 5G cellular network

    Get PDF
    Abstract. 5G Network has many important properties, including increased bandwidth, increased data throughput, high reliability, high network density, and low latency. This thesis concentrate on the low latency attribute of the 5G Standalone (SA) mode and 5G Non-Standalone (NSA) mode. One of the most critical considerations in 5G is to have low latency network for various delay-sensitive applications, such as remote diagnostics and surgery in healthcare, self-driven cars, industrial factory automation, and live audio productions in the music industry. Therefore, 5G employs various retransmission algorithms and techniques to meet the low latency standards, a new frame structure with multiple subcarrier spacing (SCS) and time slots, and a new cloud-native core. For the low latency measurements, a test setup is built. A video is sent from the 5G User Equipment (UE) to the multimedia server deployed in the University of Oulu 5G test Network (5GTN) edge server. The University of Oulu 5GTN is operating both in NSA and SA modes. Delay is measured both for the downlink and the uplink direction with Qosium tool. When calculating millisecond-level transmission delays, clock synchronization is essential. Therefore, Precision Time Protocol daemon (PTPd) service is initiated on both the sending and receiving machines. The tests comply with the specifications developed at the University of Oulu 5GTN for both the SA and the NSA mode. When the delay measurement findings were compared between the two deployment modes, it was observed that the comparison was not appropriate. The primary reason for this is that in the 5GTN, the NSA and the SA have entirely different data routing paths and configurations. Additionally, the author did not have sufficient resources to make the required architectural changes

    Timing distribution at the LHC

    Get PDF

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed
    corecore