28 research outputs found

    Tropical Carathéodory with Matroids

    Get PDF
    Bárány’s colorful generalization of Carathéodory’s Theorem combines geometrical and combinatorial constraints. Kalai–Meshulam (2005) and Holmsen (2016) generalized Bárány’s theorem by replacing color classes with matroid constraints. In this note, we obtain corresponding results in tropical convexity, generalizing the Tropical Colorful Carathéodory Theorem of Gaubert–Meunier (2010). Our proof is inspired by geometric arguments and is reminiscent of matroid intersection. Moreover, we show that the topological approach fails in this setting. We also discuss tropical colorful linear programming and show that it is NP-complete. We end with thoughts and questions on generalizations to polymatroids, anti-matroids as well as examples and matroid simplicial depth

    A faster algorithm for packing branchings in digraphs

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We consider the problem of finding an integral (and fractional) packing of branchings in a capacitated digraph with root-set demands. Schrijver described an algorithm that returns a packing with at most m + n(3) + r branchings that makes at most m(m + n3 + r) calls to an oracle that basically computes a minimum cut, where n is the number of vertices, m is the number of arcs and r is the number of root-sets of the input digraph. Leston-Rey and Wakabayashi described an algorithm that returns a packing with at most m + r - 1 branchings but makes a large number of oracle calls. In this work we provide an algorithm, inspired on ideas of Schrijver and in a paper of Gabow and Manu, that returns a packing with at most m+r 1 branchings and makes at most (m+r+2)n oracle calls. Moreover, for the arborescence packing problem our algorithm provides a packing with at most m n + 2 arborescences - thus improving the bound of m of Leston-Rey and Wakabayashi - and makes at most (m - n+5)n oracle calls. (C) 2015 Elsevier B.V. All rights reserved.We consider the problem of finding an integral (and fractional) packing of branchings in a capacitated digraph with root-set demands. Schrijver described an algorithm that returns a packing with at most m + n(3) + r branchings that makes at most m(m + n3194121131CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [301310/2005-0]CNPq [473867/2010-9, 477692/2012-5]301310/2005-0; 473867/2010-9; 477692/2012-5Wewould like to thank the reviewers for the careful reading of a previous version of this paper and for several suggestions that improved the presentation of the final version. The first author’s research was supported by Bolsa de Produtividade do CNPq P

    Neighborly and almost neighborly configurations, and their duals

    Get PDF
    This thesis presents new applications of Gale duality to the study of polytopes with extremal combinatorial properties. It consists in two parts. The first one is devoted to the construction of neighborly polytopes and oriented matroids. The second part concerns the degree of point configurations, a combinatorial invariant closely related to neighborliness. A d-dimensional polytope P is called neighborly if every subset of at most d/2 vertices of P forms a face. In 1982, Ido Shemer presented a technique to construct neighborly polytopes, which he named the "Sewing construction". With it he could prove that the number of neighborly polytopes in dimension d with n vertices grows superexponentially with n. One of the contributions of this thesis is the analysis of the sewing construction from the point of view of lexicographic extensions. This allows us to present a technique that we call the "Extended Sewing construction", that generalizes it in several aspects and simplifies its proof. We also present a second generalization that we call the "Gale Sewing construction". This construction exploits Gale duality an is based on lexicographic extensions of the duals of neighborly polytopes and oriented matroids. Thanks to this technique we obtain one of the main results of this thesis: a lower bound of ((r+d)^(((r+d)/2)^2)/(r^((r/2)^2)d^((d/2)^2)e^(3rd/4)) for the number of combinatorial types of neighborly polytopes of even dimension d and r+d+1 vertices. This result not only improves Shemer's bound, but it also improves the current best bounds for the number of polytopes. The combination of both new techniques also allows us to construct many non-realizable neighborly oriented matroids. The degree of a point configuration is the maximal codimension of its interior faces. In particular, a simplicial polytope is neighborly if and only if the degree of its set of vertices is [(d+1)/2]. For this reason, d-dimensional configurations of degree k are also known as "(d-k)-almost neighborly". The second part of the thesis presents various results on the combinatorial structure of point configurations whose degree is small compared to their dimension; specifically, those whose degree is smaller than [(d+1)/2], the degree of neighborly polytopes. The study of this problem comes motivated by Ehrhart theory, where a notion equivalent to the degree - for lattice polytopes - has been widely studied during the last years. In addition, the study of the degree is also related to the "generalized lower bound theorem" for simplicial polytopes, with Cayley polytopes and with Tverberg theory. Among other results, we present a complete combinatorial classification for point configurations of degree 1. Moreover, we show combinatorial restrictions in terms of the novel concept of "weak Cayley configuration" for configurations whose degree is smaller than a third of the dimension. We also introduce the notion of "codegree decomposition" and conjecture that any configuration whose degree is smaller than half the dimension admits a non-trivial codegree decomposition. For this conjecture, we show various motivations and we prove some particular cases

    Bibliographie

    Get PDF

    On linear, fractional, and submodular optimization

    Get PDF
    In this thesis, we study four fundamental problems in the theory of optimization. 1. In fractional optimization, we are interested in minimizing a ratio of two functions over some domain. A well-known technique for solving this problem is the Newton– Dinkelbach method. We propose an accelerated version of this classical method and give a new analysis using the Bregman divergence. We show how it leads to improved or simplified results in three application areas. 2. The diameter of a polyhedron is the maximum length of a shortest path between any two vertices. The circuit diameter is a relaxation of this notion, whereby shortest paths are not restricted to edges of the polyhedron. For a polyhedron in standard equality form with constraint matrix A, we prove an upper bound on the circuit diameter that is quadratic in the rank of A and logarithmic in the circuit imbalance measure of A. We also give circuit augmentation algorithms for linear programming with similar iteration complexity. 3. The correlation gap of a set function is the ratio between its multilinear and concave extensions. We present improved lower bounds on the correlation gap of a matroid rank function, parametrized by the rank and girth of the matroid. We also prove that for a weighted matroid rank function, the worst correlation gap is achieved with uniform weights. Such improved lower bounds have direct applications in submodular maximization and mechanism design. 4. The last part of this thesis concerns parity games, a problem intimately related to linear programming. A parity game is an infinite-duration game between two players on a graph. The problem of deciding the winner lies in NP and co-NP, with no known polynomial algorithm to date. Many of the fastest (quasi-polynomial) algorithms have been unified via the concept of a universal tree. We propose a strategy iteration framework which can be applied on any universal tree

    Discrete Geometry and Convexity in Honour of Imre Bárány

    Get PDF
    This special volume is contributed by the speakers of the Discrete Geometry and Convexity conference, held in Budapest, June 19–23, 2017. The aim of the conference is to celebrate the 70th birthday and the scientific achievements of professor Imre Bárány, a pioneering researcher of discrete and convex geometry, topological methods, and combinatorics. The extended abstracts presented here are written by prominent mathematicians whose work has special connections to that of professor Bárány. Topics that are covered include: discrete and combinatorial geometry, convex geometry and general convexity, topological and combinatorial methods. The research papers are presented here in two sections. After this preface and a short overview of Imre Bárány’s works, the main part consists of 20 short but very high level surveys and/or original results (at least an extended abstract of them) by the invited speakers. Then in the second part there are 13 short summaries of further contributed talks. We would like to dedicate this volume to Imre, our great teacher, inspiring colleague, and warm-hearted friend

    Exact linear programming circuits, curvature, and diameter

    Get PDF
    We study Linear Programming (LP) and present novel algorithms. In particular, we study LP in the context of circuits, which are support-minimal vectors of linear spaces. Our results will be stated in terms of the circuit imbalance (CI), which is the worst-case ratio of nonzero entries of circuits and whose properties we study in detail. We present following results with logarithmic dependency on CI. (i) A scaling-invariant Interior-Point Method, which solves LP in time that is polynomial in the dimensions, answering an open question by Monteiro-Tsuchiya in the affirmative. This closes a long line of work by Vavasis-Ye and Monteiro-Tsuchiya; (ii)We introduce a new polynomial-time path-following interior point method where the number of iterations admits a singly exponential upper bound. This complements recent results, that path-following method must take at least exponentially many iterations; (iii)We further provide similar upper bounds on a natural notion of curvature of the central path; (iv) A black-box algorithm that requires only quadratically many calls to an approximate LP solver to solve LP exactly. This significantly strengthens the framework by Tardos, which requires exact solvers and whose runtime is logarithmic in the maximum subdeterminant of the constraint matrix. The maximum subdeterminant is exponentially bigger than CI, already for fundamental combinatorial problems such as matchings; (v) Furthermore, we obtain a circuit diameter that is quadratic in the number of variables, giving the first polynomial bound for general LP where CI is exponential. Unlike in the simplex method, one does not have to augment around the edges of the polyhedron: Augmentations can be in any circuit direction; (vi) Lastly, we present an accelerated version of the Newton–Dinkelbach method, which extends the black-box framework to certain classes of fractional and parametric optimization problems. Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain improved runtimes over the non-accelerated version
    corecore