12,821 research outputs found

    Reverse Nearest Neighbor Heat Maps: A Tool for Influence Exploration

    Full text link
    We study the problem of constructing a reverse nearest neighbor (RNN) heat map by finding the RNN set of every point in a two-dimensional space. Based on the RNN set of a point, we obtain a quantitative influence (i.e., heat) for the point. The heat map provides a global view on the influence distribution in the space, and hence supports exploratory analyses in many applications such as marketing and resource management. To construct such a heat map, we first reduce it to a problem called Region Coloring (RC), which divides the space into disjoint regions within which all the points have the same RNN set. We then propose a novel algorithm named CREST that efficiently solves the RC problem by labeling each region with the heat value of its containing points. In CREST, we propose innovative techniques to avoid processing expensive RNN queries and greatly reduce the number of region labeling operations. We perform detailed analyses on the complexity of CREST and lower bounds of the RC problem, and prove that CREST is asymptotically optimal in the worst case. Extensive experiments with both real and synthetic data sets demonstrate that CREST outperforms alternative algorithms by several orders of magnitude.Comment: Accepted to appear in ICDE 201

    Multiple Description Vector Quantization with Lattice Codebooks: Design and Analysis

    Get PDF
    The problem of designing a multiple description vector quantizer with lattice codebook Lambda is considered. A general solution is given to a labeling problem which plays a crucial role in the design of such quantizers. Numerical performance results are obtained for quantizers based on the lattices A_2 and Z^i, i=1,2,4,8, that make use of this labeling algorithm. The high-rate squared-error distortions for this family of L-dimensional vector quantizers are then analyzed for a memoryless source with probability density function p and differential entropy h(p) < infty. For any a in (0,1) and rate pair (R,R), it is shown that the two-channel distortion d_0 and the channel 1 (or channel 2) distortions d_s satisfy lim_{R -> infty} d_0 2^(2R(1+a)) = (1/4) G(Lambda) 2^{2h(p)} and lim_{R -> infty} d_s 2^(2R(1-a)) = G(S_L) 2^2h(p), where G(Lambda) is the normalized second moment of a Voronoi cell of the lattice Lambda and G(S_L) is the normalized second moment of a sphere in L dimensions.Comment: 46 pages, 14 figure

    Polynomial cubic differentials and convex polygons in the projective plane

    Full text link
    We construct and study a natural homeomorphism between the moduli space of polynomial cubic differentials of degree d on the complex plane and the space of projective equivalence classes of oriented convex polygons with d+3 vertices. This map arises from the construction of a complete hyperbolic affine sphere with prescribed Pick differential, and can be seen as an analogue of the Labourie-Loftin parameterization of convex RP^2 structures on a compact surface by the bundle of holomorphic cubic differentials over Teichmuller space.Comment: 64 pages, 5 figures. v3: Minor revisions according to referee report. v2: Corrections in section 5 and related new material in appendix

    Deep GrabCut for Object Selection

    Full text link
    Most previous bounding-box-based segmentation methods assume the bounding box tightly covers the object of interest. However it is common that a rectangle input could be too large or too small. In this paper, we propose a novel segmentation approach that uses a rectangle as a soft constraint by transforming it into an Euclidean distance map. A convolutional encoder-decoder network is trained end-to-end by concatenating images with these distance maps as inputs and predicting the object masks as outputs. Our approach gets accurate segmentation results given sloppy rectangles while being general for both interactive segmentation and instance segmentation. We show our network extends to curve-based input without retraining. We further apply our network to instance-level semantic segmentation and resolve any overlap using a conditional random field. Experiments on benchmark datasets demonstrate the effectiveness of the proposed approaches.Comment: BMVC 201
    • …
    corecore