337 research outputs found

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Evolutionary Learning of Fuzzy Rules for Regression

    Get PDF
    The objective of this PhD Thesis is to design Genetic Fuzzy Systems (GFS) that learn Fuzzy Rule Based Systems to solve regression problems in a general manner. Particularly, the aim is to obtain models with low complexity while maintaining high precision without using expert-knowledge about the problem to be solved. This means that the GFSs have to work with raw data, that is, without any preprocessing that help the learning process to solve a particular problem. This is of particular interest, when no knowledge about the input data is available or for a first approximation to the problem. Moreover, within this objective, GFSs have to cope with large scale problems, thus the algorithms have to scale with the data

    Load forecasting on the user‐side by means of computational intelligence algorithms

    Get PDF
    Nowadays, it would be very difficult to deny the need to prioritize sustainable development through energy efficiency at all consumption levels. In this context, an energy management system (EMS) is a suitable option for continuously improving energy efficiency, particularly on the user side. An EMS is a set of technological tools that manages energy consumption information and allows its analysis. EMS, in combination with information technologies, has given rise to intelligent EMS (iEMS), which, aside from lending support to monitoring and reporting functions as an EMS does, it has the ability to model, forecast, control and diagnose energy consumption in a predictive way. The main objective of an iEMS is to continuously improve energy efficiency (on-line) as automatically as possible. The core of an iEMS is its load modeling forecasting system (LMFS). It takes advantage of historical information on energy consumption and energy-related variables in order to model and forecast load profiles and, if available, generator profiles. These models and forecasts are the main information used for iEMS applications for control and diagnosis. That is why in this thesis we have focused on the study, analysis and development of LMFS on the user side. The fact that the LMFS is applied on the user side to support an iEMS means that specific characteristics are required that in other areas of load forecasting they are not. First of all, the user-side load profiles (LPs) have a higher random behavior than others, as for example, in power system distribution or generation. This makes the modeling and forecasting process more difficult. Second, on the user side --for example an industrial user-- there is a high number and variety of places that can be monitored, modeled and forecasted, as well as their precedence or nature. Thus, on the one hand, an LMFS requires a high degree of autonomy to automatically or autonomously generate the demanded models. And on the other hand, it needs a high level of adaptability in order to be able to model and forecast different types of loads and different types of energies. Therefore, the addressed LMFS are those that do not look only for accuracy, but also adaptability and autonomy. Seeking to achieve these objectives, in this thesis work we have proposed three novel LMFS schemes based on hybrid algorithms from computational intelligence, signal processing and statistical theory. The first of them looked to improve adaptability, keeping in mind the importance of accuracy and autonomy. It was called an evolutionary training algorithm (ETA) and is based on adaptivenetwork-based-fuzzy-inference system (ANFIS) that is trained by a multi-objective genetic algorithm instead of its traditional training algorithm. As a result of this hybrid, the generalization capacity was improved (avoiding overfitting) and an easily adaptable training algorithm for new adaptive networks based on traditional ANFIS was obtained. The second scheme deals with LMF autonomy in order to build models from multiple loads automatically. Similar to the previous proposal, an ANFIS and a MOGA were used. In this case, the MOGA was used to find a near-optimal configuration for the ANFIS instead of training it. The LMFS relies on this configuration to work properly, as well as to maintain accuracy and generalization capabilities. Real data from an industrial scenario were used to test the proposed scheme and the multi-site modeling and self-configuration results were satisfactory. Furthermore, other algorithms were satisfactorily designed and tested for processing raw data in outlier detection and gap padding. The last of the proposed approaches sought to improve accuracy while keeping autonomy and adaptability. It took advantage of dominant patterns (DPs) that have lower time resolution than the target LP, so they are easier to model and forecast. The Hilbert-Huang transform and Hilbert-spectral analysis were used for detecting and selecting the DPs. Those selected were used in a proposed scheme of partial models (PM) based on parallel ANFIS or artificial neural networks (ANN) to extract the information and give it to the main PM. Therefore, LMFS accuracy improved and the user-side LP noising problem was reduced. Additionally, in order to compensate for the added complexity, versions of self-configured sub-LMFS for each PM were used. This point was fundamental since, the better the configuration, the better the accuracy of the model; and subsequently the information provided to the main partial model was that much better. Finally, and to close this thesis, an outlook of trends regarding iEMS and an outline of several hybrid algorithms that are pending study and testing are presented.En el contexto energético actual y particularmente en el lado del usuario, el concepto de sistema de gestión energética (EMS) se presenta como una alternativa apropiada para mejorar continuamente la eficiencia energética. Los EMSs en combinación con las tecnologías informáticas dan origen al concepto de iEMS, que además de soportar las funciones de los EMS, tienen la capacidad de modelar, pronosticar, controlar y supervisar los consumos energéticos. Su principal objetivo es el de realizar una mejora continua, lo más autónoma posible y predictiva de la eficiencia energética. Este tipo de sistemas tienen como núcleo fundamental el sistema de modelado y pronóstico de consumos (Load Modeling and Forecasting System, LMFS). El LMFS está habilitado para pronosticar el comportamiento futuro de cargas y, si es necesario, de generadores. Es sobre estos pronósticos sobre los cuales el iEMS puede realizar sus tareas automáticas y predictivas de optimización y supervisión. Los LMFS en el lado del usuario son el foco de esta tesis. Un LMFS en el lado del usuario, diseñado para soportar un iEMS requiere o demanda ciertas características que en otros contextos no serían tan necesarias. En primera estancia, los perfiles de los usuarios tienen un alto grado de aleatoriedad que los hace más difíciles de pronosticar. Segundo, en el lado del usuario, por ejemplo en la industria, el gran número de puntos a modelar requiere que el LMFS tenga por un lado, un nivel elevado de autonomía para generar de la manera más desatendida posible los modelos. Por otro lado, necesita un nivel elevado de adaptabilidad para que, usando la misma estructura o metodología, pueda modelar diferentes tipos de cargas cuya procedencia pude variar significativamente. Por lo tanto, los sistemas de modelado abordados en esta tesis son aquellos que no solo buscan mejorar la precisión, sino también la adaptabilidad y autonomía. En busca de estos objetivos y soportados principalmente por algoritmos de inteligencia computacional, procesamiento de señales y estadística, hemos propuesto tres algoritmos novedosos para el desarrollo de un LMFS en el lado del usuario. El primero de ellos busca mejorar la adaptabilidad del LMFS manteniendo una buena precisión y capacidad de autonomía. Denominado ETA, consiste del uso de una estructura ANFIS que es entrenada por un algoritmo genético multi objetivo (MOGA). Como resultado de este híbrido, obtenemos un algoritmo con excelentes capacidades de generalización y fácil de adaptar para el entrenamiento y evaluación de nuevas estructuras adaptativas basadas en ANFIS. El segundo de los algoritmos desarrollados aborda la autonomía del LMFS para así poder generar modelos de múltiples cargas. Al igual que en la anterior propuesta usamos un ANFIS y un MOGA, pero esta vez el MOGA en vez de entrenar el ANFIS, se utiliza para encontrar la configuración cuasi-óptima del ANFIS. Encontrar la configuración apropiada de un ANFIS es muy importante para obtener un buen funcionamiento del LMFS en lo que a precisión y generalización respecta. El LMFS propuesto, además de configurar automáticamente el ANFIS, incluyó diversos algoritmos para procesar los datos puros que casi siempre estuvieron contaminados de datos espurios y gaps de información, operando satisfactoriamente en las condiciones de prueba en un escenario real. El tercero y último de los algoritmos buscó mejorar la precisión manteniendo la autonomía y adaptabilidad, aprovechando para ello la existencia de patrones dominantes de más baja resolución temporal que el consumo objetivo, y que son más fáciles de modelar y pronosticar. La metodología desarrollada se basa en la transformada de Hilbert-Huang para detectar y seleccionar tales patrones dominantes. Además, esta metodología define el uso de modelos parciales de los patrones dominantes seleccionados, para mejorar la precisión del LMFS y mitigar el problema de aleatoriedad que afecta a los consumos en el lado del usuario. Adicionalmente, se incorporó el algoritmo de auto configuración que se presentó en la propuesta anterior para hallar la configuración cuasi-óptima de los modelos parciales. Este punto fue crucial puesto que a mejor configuración de los modelos parciales mayor es la mejora en precisión del pronóstico final. Finalmente y para cerrar este trabajo de tesis, se realizó una prospección de las tendencias en cuanto al uso de iEMS y se esbozaron varias propuestas de algoritmos híbridos, cuyo estudio y comprobación se plantea en futuros estudios

    A Concise Fuzzy Rule Base to Reason Student Performance Based on Rough-Fuzzy Approach

    Get PDF
    A fuzzy inference system employing fuzzy if then rules able to model the qualitative aspects of human expertise and reasoning processes without employing precise quantitative analyses. This is due to the fact that the problem in acquiring knowledge from human experts is that much of the information is uncertain, inconsistent, vague and incomplete (Khoo and Zhai, 2001; Tsaganou et al., 2002; San Pedro and Burstein, 2003; Yang et al., 2005). The drawbacks of FIS are that a lot of trial and error effort need to be taken into account in order to define the best fitted membership functions (Taylan and Karagözoglu, 2009) and no standard methods exist for transforming human knowledge or experience into the rule base (Jang, 1993)

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System
    corecore