1,552 research outputs found

    A new approximation hierarchy for polynomial conic optimization

    Get PDF
    In this paper we consider polynomial conic optimization problems, where the feasible set is defined by constraints in the form of given polynomial vectors belonging to given nonempty closed convex cones, and we assume that all the feasible solutions are non-negative. This family of problems captures in particular polynomial optimization problems (POPs), polynomial semi-definite polynomial optimization problems (PSDPs) and polynomial second-order cone-optimization problems (PSOCPs). We propose a new general hierarchy of linear conic optimization relaxations inspired by an extension of Pólyaʼs Positivstellensatz for homogeneous polynomials being positive over a basic semi-algebraic cone contained in the non-negative orthant, introduced in Dickinson and Povh (J Glob Optim 61(4):615-625, 2015). We prove that based on some classic assumptions, these relaxations converge monotonically to the optimal value of the original problem. Adding a redundant polynomial positive semi-definite constraint to the original problem drastically improves the bounds produced by our method. We provide an extensive list of numerical examples that clearly indicate the advantages and disadvantages of our hierarchy. In particular, in comparison to the classic approach of sum-of-squares, our new method provides reasonable bounds on the optimal value for POPs, and strong bounds for PSDPs and PSOCPs, even outperforming the sum-of-squares approach in these latter two cases.V članku obravnavamo polinomske konične optimizacijske probleme, kjer je dopustna množica definirana z omejitvami, da morajo biti dani polinomski vektorji v danih nepraznih zaprtih konveksnih stožcih. Dodatno morajo dopustne rešitve zadoščati pogoju nenegativnosti. Ta družina problemov zajema zlasti klasične probleme polinomske optimizacije (POP), probleme polinomske semidefinitne optimizacije (PSDP) in probleme polinomske optimizacije nad stožci drugega reda (PSOCP). Predlagamo novo splošno hierarhijo linearnih koničnih optimizacijskih poenostavitev, ki naravno sledijo iz razširitve Pólya-jevega izreka o pozitivnosti iz Dickinson in Povh (J Glob Optim 61 (4): 615-625, 2015). Ob nekaterih klasičnih predpostavkah te poenostavitve monotono konvergirajo k optimalni vrednosti izvirnega problema. Kot zanimivost pokažemo, da dodajanje posebne redundantne omejitve k osnovnemu problemu ne spremeni optimalne rešitve tega problema, a bistveno izboljša kvaliteto poenostavitev. V članku tudi predstavimo obsežen seznam številčnih primerov, ki jasno kažejo na prednosti in slabosti naše hierarhije

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Linear conic optimization for nonlinear optimal control

    Full text link
    Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control problem and its linear conic formulations are developed. As illustrated by a couple of simple examples, these results are relevant in the context of finite-dimensional semidefinite programming relaxations used to approximate numerically the solutions of the infinite-dimensional linear conic problems.Comment: Submitted for possible inclusion as a contributed chapter in S. Ahmed, M. Anjos, T. Terlaky (Editors). Advances and Trends in Optimization with Engineering Applications. MOS-SIAM series, SIAM, Philadelphi

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    A Tensor Analogy of Yuan's Theorem of the Alternative and Polynomial Optimization with Sign structure

    Full text link
    Yuan's theorem of the alternative is an important theoretical tool in optimization, which provides a checkable certificate for the infeasibility of a strict inequality system involving two homogeneous quadratic functions. In this paper, we provide a tractable extension of Yuan's theorem of the alternative to the symmetric tensor setting. As an application, we establish that the optimal value of a class of nonconvex polynomial optimization problems with suitable sign structure (or more explicitly, with essentially non-positive coefficients) can be computed by a related convex conic programming problem, and the optimal solution of these nonconvex polynomial optimization problems can be recovered from the corresponding solution of the convex conic programming problem. Moreover, we obtain that this class of nonconvex polynomial optimization problems enjoy exact sum-of-squares relaxation, and so, can be solved via a single semidefinite programming problem.Comment: acceted by Journal of Optimization Theory and its application, UNSW preprint, 22 page
    corecore