198 research outputs found

    Stability Region of a Slotted Aloha Network with K-Exponential Backoff

    Full text link
    Stability region of random access wireless networks is known for only simple network scenarios. The main problem in this respect is due to interaction among queues. When transmission probabilities during successive transmissions change, e.g., when exponential backoff mechanism is exploited, the interactions in the network are stimulated. In this paper, we derive the stability region of a buffered slotted Aloha network with K-exponential backoff mechanism, approximately, when a finite number of nodes exist. To this end, we propose a new approach in modeling the interaction among wireless nodes. In this approach, we model the network with inter-related quasi-birth-death (QBD) processes such that at each QBD corresponding to each node, a finite number of phases consider the status of the other nodes. Then, by exploiting the available theorems on stability of QBDs, we find the stability region. We show that exponential backoff mechanism is able to increase the area of the stability region of a simple slotted Aloha network with two nodes, more than 40\%. We also show that a slotted Aloha network with exponential backoff may perform very near to ideal scheduling. The accuracy of our modeling approach is verified by simulation in different conditions.Comment: 30 pages, 6 figure

    Error Floor Analysis of Coded Slotted ALOHA over Packet Erasure Channels

    Get PDF
    We present a framework for the analysis of the error floor of coded slotted ALOHA (CSA) for finite frame lengths over the packet erasure channel. The error floor is caused by stopping sets in the corresponding bipartite graph, whose enumeration is, in general, not a trivial problem. We therefore identify the most dominant stopping sets for the distributions of practical interest. The derived analytical expressions allow us to accurately predict the error floor at low to moderate channel loads and characterize the unequal error protection inherent in CSA

    ALOHA With Collision Resolution(ALOHA-CR): Theory and Software Defined Radio Implementation

    Full text link
    A cross-layer scheme, namely ALOHA With Collision Resolution (ALOHA-CR), is proposed for high throughput wireless communications in a cellular scenario. Transmissions occur in a time-slotted ALOHA-type fashion but with an important difference: simultaneous transmissions of two users can be successful. If more than two users transmit in the same slot the collision cannot be resolved and retransmission is required. If only one user transmits, the transmitted packet is recovered with some probability, depending on the state of the channel. If two users transmit the collision is resolved and the packets are recovered by first over-sampling the collision signal and then exploiting independent information about the two users that is contained in the signal polyphase components. The ALOHA-CR throughput is derived under the infinite backlog assumption and also under the assumption of finite backlog. The contention probability is determined under these two assumptions in order to maximize the network throughput and maintain stability. Queuing delay analysis for network users is also conducted. The performance of ALOHA-CR is demonstrated on the Wireless Open Access Research Platform (WARP) test-bed containing five software defined radio nodes. Analysis and test-bed results indicate that ALOHA-CR leads to significant increase in throughput and reduction of service delays

    All-to-all Broadcast for Vehicular Networks Based on Coded Slotted ALOHA

    Get PDF
    We propose an uncoordinated all-to-all broadcast protocol for periodic messages in vehicular networks based on coded slotted ALOHA (CSA). Unlike classical CSA, each user acts as both transmitter and receiver in a half-duplex mode. As in CSA, each user transmits its packet several times. The half-duplex mode gives rise to an interesting design trade-off: the more the user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We compare the proposed protocol with carrier sense multiple access with collision avoidance, currently adopted as a multiple access protocol for vehicular networks. The results show that the proposed protocol greatly increases the number of users in the network that reliably communicate with each other. We also provide analytical tools to predict the performance of the proposed protocol.Comment: v2: small typos fixe

    On the Stability of Random Multiple Access with Stochastic Energy Harvesting

    Full text link
    In this paper, we consider the random access of nodes having energy harvesting capability and a battery to store the harvested energy. Each node attempts to transmit the head-of-line packet in the queue if its battery is nonempty. The packet and energy arrivals into the queue and the battery are all modeled as a discrete-time stochastic process. The main contribution of this paper is the exact characterization of the stability region of the packet queues given the energy harvesting rates when a pair of nodes are randomly accessing a common channel having multipacket reception (MPR) capability. The channel with MPR capability is a generalized form of the wireless channel modeling which allows probabilistic receptions of the simultaneously transmitted packets. The results obtained in this paper are fairly general as the cases with unlimited energy for transmissions both with the collision channel and the channel with MPR capability can be derived from ours as special cases. Furthermore, we study the impact of the finiteness of the batteries on the achievable stability region.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Saint Petersburg, Russia, Aug. 201
    • …
    corecore