4,354 research outputs found

    Mechatronics & the cloud

    Get PDF
    Conventionally, the engineering design process has assumed that the design team is able to exercise control over all elements of the design, either directly or indirectly in the case of sub-systems through their specifications. The introduction of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) means that a design team’s ability to have control over all elements of a system is no longer the case, particularly as the actual system configuration may well be being dynamically reconfigured in real-time according to user (and vendor) context and need. Additionally, the integration of the Internet of Things with elements of Big Data means that information becomes a commodity to be autonomously traded by and between systems, again according to context and need, all of which has implications for the privacy of system users. The paper therefore considers the relationship between mechatronics and cloud-basedtechnologies in relation to issues such as the distribution of functionality and user privacy

    Towards a New Framework for Product Development

    Get PDF
    In the mid-1980s, Andreasen and Hein first described their model of Integrated Product Development. Many Danish companies quickly embraced the principles of integrated product development and adapted the model to their specific business and product context. However, there is concern amongst many Danish companies that Integrated Product Development no longer provides a sufficient way of describing industry’s product development activity. More specifically, five of these companies have supported a programme of research activities at the Technical University of Denmark, which seeks to develop a new framework for product development. This paper will describe the research approach being taken, present some initial findings, and outline a vision of a new working approach to product development

    Innovation and failure in mechatronics design education

    Get PDF
    Innovative engineering design always has associated with it the risk of failure, and it is the role of the design engineer to mitigate the possibilities of failure in the final system. Education should however provide a safe space for students to both innovate and to learn about and from failures. However, pressures on course designers and students can result in their adopting a conservative, and risk averse, approach to problem solving. The paper therefore considers the nature of both innovation and failure, and looks at how these might be effectively combined within mechatronics design education

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine
    • …
    corecore