46,126 research outputs found

    A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

    Full text link
    FASILL (acronym of "Fuzzy Aggregators and Similarity Into a Logic Language") is a fuzzy logic programming language with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. FASILL integrates and extends features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules) and Bousi~Prolog (which uses a weak unification algorithm and is well suited for flexible query answering). Hence, it properly manages similarity and truth degrees in a single framework combining the expressive benefits of both languages. This paper presents the main features and implementations details of FASILL. Along the paper we describe its syntax and operational semantics and we give clues of the implementation of the lattice module and the similarity module, two of the main building blocks of the new programming environment which enriches the FLOPER system developed in our research group.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    A kernel-based framework for learning graded relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are often expressed in a graded manner in real-world applications. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and graded relations are considered, and it unifies existing approaches because different types of graded relations can be modeled, including symmetric and reciprocal relations. This framework establishes important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated through various experiments on synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Implementing imperfect information in fuzzy databases

    Get PDF
    Information in real-world applications is often vague, imprecise and uncertain. Ignoring the inherent imperfect nature of real-world will undoubtedly introduce some deformation of human perception of real-world and may eliminate several substantial information, which may be very useful in several data-intensive applications. In database context, several fuzzy database models have been proposed. In these works, fuzziness is introduced at different levels. Common to all these proposals is the support of fuzziness at the attribute level. This paper proposes first a rich set of data types devoted to model the different kinds of imperfect information. The paper then proposes a formal approach to implement these data types. The proposed approach was implemented within a relational object database model but it is generic enough to be incorporated into other database models.ou

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe

    Measuring Relations Between Concepts In Conceptual Spaces

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by regions in this space. Our recent mathematical formalization of this framework is capable of representing correlations between different domains in a geometric way. In this paper, we extend our formalization by providing quantitative mathematical definitions for the notions of concept size, subsethood, implication, similarity, and betweenness. This considerably increases the representational power of our formalization by introducing measurable ways of describing relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial text overlap with arXiv:1707.05165, arXiv:1706.0636

    Autonomous clustering using rough set theory

    Get PDF
    This paper proposes a clustering technique that minimises the need for subjective human intervention and is based on elements of rough set theory. The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency

    Fuzzy investment decision support for brownfield redevelopment

    Get PDF
    Tato disertační práce se zaměřuje na problematiku investování a podporu rozhodování pomocí moderních metod. Zejména pokud jde o analýzu, hodnocení a výběr tzv. brownfieldů pro jejich redevelopment (revitalizaci). Cílem této práce je navrhnout univerzální metodu, která usnadní rozhodovací proces. Proces rozhodování je v praxi komplikován též velkým počet relevantních parametrů ovlivňujících konečné rozhodnutí. Navržená metoda je založena na využití fuzzy logiky, modelování, statistické analýzy, shlukové analýzy, teorie grafů a na sofistikovaných metodách sběru a zpracování informací. Nová metoda umožňuje zefektivnit proces analýzy a porovnávání alternativních investic a přesněji zpracovat velký objem informací. Ve výsledku tak bude zmenšen počet prvků množiny nejvhodnějších alternativních investic na základě hierarchie parametrů stanovených investorem.This dissertation focuses on decision making, investing and brownfield redevelopment. Especially on the analysis, evaluation and selection of previously used real estates suitable for commercial use. The objective of this dissertation is to design a method that facilitates the decision making process with many possible alternatives and large number of relevant parameters influencing the decision. The proposed method is based on the use of fuzzy logic, modeling, statistic analysis, cluster analysis, graph theory and sophisticated methods of information collection and processing. New method allows decision makers to process much larger amount of information and evaluate possible investment alternatives efficiently.
    corecore