2,931 research outputs found

    Chemotherapy planning and multi-appointment scheduling: formulations, heuristics and bounds

    Full text link
    The number of new cancer cases is expected to increase by about 50% in the next 20 years, and the need for chemotherapy treatments will increase accordingly. Chemotherapy treatments are usually performed in outpatient cancer centers where patients affected by different types of tumors are treated. The treatment delivery must be carefully planned to optimize the use of limited resources, such as drugs, medical and nursing staff, consultation and exam rooms, and chairs and beds for the drug infusion. Planning and scheduling chemotherapy treatments involve different problems at different decision levels. In this work, we focus on the patient chemotherapy multi-appointment planning and scheduling problem at an operational level, namely the problem of determining the day and starting time of the oncologist visit and drug infusion for a set of patients to be scheduled along a short-term planning horizon. We use a per-pathology paradigm, where the days of the week in which patients can be treated, depending on their pathology, are known. We consider different metrics and formulate the problem as a multi-objective optimization problem tackled by sequentially solving three problems in a lexicographic multi-objective fashion. The ultimate aim is to minimize the patient's discomfort. The problems turn out to be computationally challenging, thus we propose bounds and ad-hoc approaches, exploiting alternative problem formulations, decomposition, and kk-opt search. The approaches are tested on real data from an Italian outpatient cancer center and outperform state-of-the-art solvers.Comment: 28 pages, 3 figure

    A stochastic programming approach for chemotherapy appointment scheduling

    Get PDF
    Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in pre-medication and infusion durations. In this paper, we formulate a two-stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability and number of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real-life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty

    Planning oncologists of ambulatory care units

    Get PDF
    International audienceThis paper addresses the problem of determining the work schedule, called medical planning, of oncologists for chemotherapy of oncology patients at ambulatory care units. A mixed integer programming (MIP) model is proposed for medical planning in order to best balance bed capacity requirements under capacity constraints of key resources such as beds and oncologists. The most salient feature of the MIP model is the explicit modeling of specific features of chemotherapy such as treatment protocols. The medical planning problem is proved to be NP-complete. A three-stage approach is proposed for determining good medical planning in reasonable computational time. From numerical experiments based on field data, the three-stage approach takes less than 10 min and always outperforms the direct application of MIP solvers with 10 h CPU time. Compared with the current planning, the three-stage approach reduces the peak daily bed capacity requirement by 20 h to 45 h while the maximum theoretical daily bed capacity is 162 h

    Integrating lean thinking and mathematical optimization: A case study in appointment scheduling of hematological treatments

    Get PDF
    This paper addresses the relationship between lean thinking and mathematical optimization. We discuss the roles of the two approaches, using as a reference case study the appointment scheduling process in a hematological center of a large Italian hospital. We report on how lean tools have been deployed to improve the process, we present a mathematical optimization model and discuss its implementation. Our aim is to show that the joint use of lean thinking and mathematical optimization can disclose large benefits when they are properly integrated in the improvement process. In our case study, simulated experiments point out that the average patient lead time could be decreased by more than 30%. Keywords: Appointment scheduling, Hematological treatments, Lean thinkin

    Leaving a mark on healthcare delivery with operations analysis

    Get PDF
    In the Dutch context we see similar problems as outlined in Linda Green’s commentary and, due in part to the redesign of the healthcare financing structure in the Netherlands, we have also seen a tremendous increase in the demand for operations analysis. The major redesign of the financial structure is described below, but for now, it is sufficient to state that its principal purpose is to achieve better value for the money spent on healthcare. Achieving more value for money is certainly an area where operations analysis can play a leading role. As a result, the demand for both our research capacity and recent graduates has been increasing. Furthermore, since healthcare providers are truly engaged, implementations of our results and recommendations have likewise increased. In this paper, we discuss recent projects to build on Linda Green’s commentary and to argue how to apply operations analysis in healthcare in a scientifically and practically relevant way

    Organizing Multidisciplinary Care for Children with Neuromuscular Diseases

    Get PDF
    The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently opened the `Children's Muscle Center Amsterdam' (CMCA). The CMCA diagnoses and treats children with neuromuscular diseases. These patients require care from a variety of clinicians. Through the establishment of the CMCA, children and their parents will generally visit the hospital only once a year, while previously they visited on average six times a year. This is a major improvement, because the hospital visits are both physically and psychologically demanding for the patients. This article describes how quantitative modelling supports the design and operations of the CMCA. First, an integer linear program is presented that selects which patients to invite for a treatment day and schedules the required combination of consultations, examinations and treatments on one day. Second, the integer linear program is used as input to a simulation to study to estimate the capacity of the CMCA, expressed in the distribution of the number patients that can be seen on one diagnosis day. Finally, a queueing model is formulated to predict the access time distributions based upon the simulation outcomes under various demand scenarios
    corecore