13,518 research outputs found

    Jmax-pruning: a facility for the information theoretic pruning of modular classification rules

    Get PDF
    The Prism family of algorithms induces modular classification rules in contrast to the Top Down Induction of Decision Trees (TDIDT) approach which induces classification rules in the intermediate form of a tree structure. Both approaches achieve a comparable classification accuracy. However in some cases Prism outperforms TDIDT. For both approaches pre-pruning facilities have been developed in order to prevent the induced classifiers from overfitting on noisy datasets, by cutting rule terms or whole rules or by truncating decision trees according to certain metrics. There have been many pre-pruning mechanisms developed for the TDIDT approach, but for the Prism family the only existing pre-pruning facility is J-pruning. J-pruning not only works on Prism algorithms but also on TDIDT. Although it has been shown that J-pruning produces good results, this work points out that J-pruning does not use its full potential. The original J-pruning facility is examined and the use of a new pre-pruning facility, called Jmax-pruning, is proposed and evaluated empirically. A possible pre-pruning facility for TDIDT based on Jmax-pruning is also discussed

    A Classification Rules Mining Method based on Dynamic Rules' Frequency

    Get PDF
    Rule based classification or rule induction (RI) in data mining is an approach that normally generates classifiers containing simple yet effective rules. Most RI algorithms suffer from few drawbacks mainly related to rule pruning and rules sharing training data instances. In response to the above two issues, a new dynamic rule induction (DRI) method is proposed that utilises two thresholds to minimise the items search space. Whenever a rule is generated, DRI algorithm ensures that all candidate items' frequencies are updated to reflect the deletion of the rule’s training data instances. Therefore, the remaining candidate items waiting to be added to other rules have dynamic frequencies rather static. This enables DRI to generate not only rules with 100% accuracy but rules with high accuracy as well. Experimental tests using a number of UCI data sets have been conducted using a number of RI algorithms. The results clearly show competitive performance in regards to classification accuracy and classifier size of DRI when compared to other RI algorithms

    Computationally efficient induction of classification rules with the PMCRI and J-PMCRI frameworks

    Get PDF
    In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach.are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach

    Design and analysis of scalable rule induction systems

    Get PDF
    Machine learning has been studied intensively during the past two decades. One motivation has been the desire to automate the process of knowledge acquisition during the construction of expert systems. The recent emergence of data mining as a major application for machine learning algorithms has led to the need for algorithms that can handle very large data sets. In real data mining applications, data sets with millions of training examples, thousands of attributes and hundreds of classes are common. Designing learning algorithms appropriate for such applications has thus become an important research problem. A great deal of research in machine learning has focused on classification learning. Among the various machine learning approaches developed for classification, rule induction is of particular interest for data mining because it generates models in the form of IF-THEN rules which are more expressive and easier for humans to comprehend. One weakness with rule induction algorithms is that they often scale relatively poorly with large data sets, especially on noisy data. The work reported in this thesis aims to design and develop scalable rule induction algorithms that can process large data sets efficiently while building from them the best possible models. There are two main approaches for rule induction, represented respectively by CN2 and the AQ family of algorithms. These approaches vary in the search strategy employed for examining the space of possible rules, each of which has its own advantages and disadvantages. The first part of this thesis introduces a new rule induction algorithm for learning classification rules, which broadly follows the approach of algorithms represented by CN2. The algorithm presents a new search method which employs several novel search-space pruning rules and rule-evaluation techniques. This results in a highly efficient algorithm with improved induction performance. Real-world data do not only contain nominal attributes but also continuous attributes. The ability to handle continuously valued data is thus crucial to the success of any general purpose learning algorithm. Most current discretisation approaches are developed as pre- processes for learning algorithms. The second part of this thesis proposes a new approach which discretises continuous-valued attributes during the learning process. Incorporating discretisation into the learning process has the advantage of taking into account the bias inherent in the learning system as well as the interactions between the different attributes. This in turn leads to improved performance. Overfitting the training data is a major problem in machine learning, particularly when noise is present. Overfitting increases learning time and reduces both the accuracy and the comprehensibility of the generated rules, making learning from large data sets more difficult. Pruning is a technique widely used for addressing such problems and consequently forms an essential component of practical learning algorithms. The third part of this thesis presents three new pruning techniques for rule induction based on the Minimum Description Length (MDL) principle. The result is an effective learning algorithm that not only produces an accurate and compact rule set, but also significantly accelerates the learning process. RULES-3 Plus is a simple rule induction algorithm developed at the author's laboratory which follows a similar approach to the AQ family of algorithms. Despite having been successfully applied to many learning problems, it has some drawbacks which adversely affect its performance. The fourth part of this thesis reports on an attempt to overcome these drawbacks by utilising the ideas presented in the first three parts of the thesis. A new version of RULES-3 Plus is reported that is a general and efficient algorithm with a wide range of potential applications

    Rule-based Machine Learning Methods for Functional Prediction

    Full text link
    We describe a machine learning method for predicting the value of a real-valued function, given the values of multiple input variables. The method induces solutions from samples in the form of ordered disjunctive normal form (DNF) decision rules. A central objective of the method and representation is the induction of compact, easily interpretable solutions. This rule-based decision model can be extended to search efficiently for similar cases prior to approximating function values. Experimental results on real-world data demonstrate that the new techniques are competitive with existing machine learning and statistical methods and can sometimes yield superior regression performance.Comment: See http://www.jair.org/ for any accompanying file

    Random Prism: An Alternative to Random Forests.

    Get PDF
    Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Automatically evolving rule induction algorithms with grammar-based genetic programming

    Get PDF
    In the last 30 years, research in the field of rule induction algorithms produced a large number of algorithms. However, these algorithms are usually obtained from the combination of a basic rule induction algorithm (typically following the sequential covering approach) with new evaluation functions, pruning methods and stopping criteria for refining or producing rules, generating many "new" and more sophisticated sequential covering algorithms. We cannot deny that these attempts to improve the basic sequential covering approach have succeeded. Hence, if manually changing these major components of rule induction algorithms can result in new, significantly better ones, why not to automate this process to make it more cost-effective? This is the core idea of this work: to automate the process of designing rule induction algorithms by means of grammar-based genetic programming. Grammar-based Genetic Programming (GGP) is a special type of evolutionary algorithm used to automatically evolve computer programs. The most interesting feature of this type of algorithm is that it incorporates a grammar into its search mechanism, which expresses prior knowledge about the problem being solved. Since we have a lot of previous knowledge about how humans design rule induction algorithms, this type of algorithm is intuitively a suitable tool to automatically evolve rule induction algorithms. The grammar given to the proposed GGP system includes knowledge about how humans- design rule induction algorithms, and also presents some new elements which could work in rule induction algorithms, but to the best of our knowledge were not previously tested. The GG P system aims to evolve rule induction algorithms under two different frameworks, as follows. In the first framework, the GGP is used to evolve robust rule induction algorithms, i.e., algorithms which were designed to be applied to virtually any classification data set, like a manually-designed rule induction algorithm. In the second framework, the GGP is applied to evolve rule induction algorithms tailored to a specific application XVI domain, i.e., rule induction algorithms tailored to a single data set. Note that the latter framework is hardly feasible on a hard scale in the case of conventional, manually-designed algorithms, since the number of classification data sets greatly outnumbers the number of rule induction algorithms designers. However, it is clearly feasible on a large scale when using the proposed system, which automates the process of rule induction algorithm design and implementation. Overall, extensive computational experiments with 20 VCI data sets and 5 bioinformatics data sets showed that effective rule induction algorithms can be automatically generated using the GGP in both frameworks. Moreover, the automatically evolved rule induction algorithms were shown to be competitive with (and overall slightly better than) four well-known manually designed rule induction algorithms when comparing their predictive accuracies. The proposed GGP system was also compared to a grammar-based hillclimbing system, and experimental results showed that the GGP system is a more effective method to evolve rule induction algorithms than the grammar-based hillclimbing method. At last, a multi-objective version of the GGP (based on the concept of Pareto dominance) was also proposed, and experiments were performed to evolve robust rule induction algorithms which generate both accurate and simple models. The results showed that in most of the cases the GGP system can produce rule induction algorithms which are competitive in predictive accuracy to wellknown human-designed rule induction algorithms, but generate simpler classification modes - i.e., smaller rule sets, intuitively easier to be interpreted by the user
    corecore