23,564 research outputs found

    Апроксимація часових рядів експоненціального типу на прикладі динаміки зростання населення США

    Get PDF
    The article represents a new approach to the exponential polygonal mathematical model formulationat the time series approximation in terms of the USA population growth rateВ статье приведен новый подход для построения экспоненциально-полигональной математической модели при аппроксимации временных рядов на примере динамики роста населенияСШАУ статті наведений новий підхід щодо побудови експоненціально-полігональної математичної моделі під час апроксимації часових рядів на прикладі динаміки зростання населення СШ

    Speeding up Simplification of Polygonal Curves using Nested Approximations

    Full text link
    We develop a multiresolution approach to the problem of polygonal curve approximation. We show theoretically and experimentally that, if the simplification algorithm A used between any two successive levels of resolution satisfies some conditions, the multiresolution algorithm MR will have a complexity lower than the complexity of A. In particular, we show that if A has a O(N2/K) complexity (the complexity of a reduced search dynamic solution approach), where N and K are respectively the initial and the final number of segments, the complexity of MR is in O(N).We experimentally compare the outcomes of MR with those of the optimal "full search" dynamic programming solution and of classical merge and split approaches. The experimental evaluations confirm the theoretical derivations and show that the proposed approach evaluated on 2D coastal maps either shows a lower complexity or provides polygonal approximations closer to the initial curves.Comment: 12 pages + figure

    BSP-fields: An Exact Representation of Polygonal Objects by Differentiable Scalar Fields Based on Binary Space Partitioning

    Get PDF
    The problem considered in this work is to find a dimension independent algorithm for the generation of signed scalar fields exactly representing polygonal objects and satisfying the following requirements: the defining real function takes zero value exactly at the polygonal object boundary; no extra zero-value isosurfaces should be generated; C1 continuity of the function in the entire domain. The proposed algorithms are based on the binary space partitioning (BSP) of the object by the planes passing through the polygonal faces and are independent of the object genus, the number of disjoint components, and holes in the initial polygonal mesh. Several extensions to the basic algorithm are proposed to satisfy the selected optimization criteria. The generated BSP-fields allow for applying techniques of the function-based modeling to already existing legacy objects from CAD and computer animation areas, which is illustrated by several examples

    Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection

    Full text link
    Polygonal finite elements generally do not pass the patch test as a result of quadrature error in the evaluation of weak form integrals. In this work, we examine the consequences of lack of polynomial consistency and show that it can lead to a deterioration of convergence of the finite element solutions. We propose a general remedy, inspired by techniques in the recent literature of mimetic finite differences, for restoring consistency and thereby ensuring the satisfaction of the patch test and recovering optimal rates of convergence. The proposed approach, based on polynomial projections of the basis functions, allows for the use of moderate number of integration points and brings the computational cost of polygonal finite elements closer to that of the commonly used linear triangles and bilinear quadrilaterals. Numerical studies of a two-dimensional scalar diffusion problem accompany the theoretical considerations
    corecore