24,684 research outputs found

    A new approach to image enhancement for the visually impaired

    Get PDF
    This works aims at enhancing images by using the colour appearance model CIECAM02 for the visually impaired to view digital displays to complement the existing image processing approaches with a reference to normal visions. Specifically, by studying the images perceived by low-vision users, the colour ranges of these perceived views are compared with those viewed by normal vision and then characterized and represented using CIECAM02 correlates, which include lightness, colourfulness, and hue. For low-vision users, the extents of these attributes are therefore obtained. Subsequently, for any input image, these CIECAM02 attributes are subsequently enhanced through histogram equalizer technique within their respective ranges for low-vision users. In comparison with the approach of RGB histogram equalizer, the preliminary result has shown that the proposed method appears to be better to enhance the contents depicted in an image. The evaluation experiment was carried out using an array of low-vision simulator glasses to be worn by a group of subjects with normal vision. The next stage of the work remains to invite real low-vision users to evaluate the proposed work.

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    The Eye: A Light Weight Mobile Application for Visually Challenged People Using Improved YOLOv5l Algorithm

    Get PDF
    The eye is an essential sensory organ that allows us to perceive our surroundings at a glance. Losing this sense can result in numerous challenges in daily life. However, society is designed for the majority, which can create even more difficulties for visually impaired individuals. Therefore, empowering them and promoting self-reliance are crucial. To address this need, we propose a new Android application called “The Eye” that utilizes Machine Learning (ML)-based object detection techniques to recognize objects in real-time using a smartphone camera or a camera attached to a stick. The article proposed an improved YOLOv5l algorithm to improve object detection in visual applications. YOLOv5l has a larger model size and captures more complex features and details, leading to enhanced object detection accuracy compared to smaller variants like YOLOv5s and YOLOv5m. The primary enhancement in the improved YOLOv5l algorithm is integrating L1 and L2 regularization techniques. These techniques prevent overfitting and improve generalization by adding a regularization term to the loss function during training. Our approach combines image processing and text-to-speech conversion modules to produce reliable results. The Android text-to-speech module is then used to convert the object recognition results into an audio output. According to the experimental results, the improved YOLOv5l has higher detection accuracy than the original YOLOv5 and can detect small, multiple, and overlapped targets with higher accuracy. This study contributes to the advancement of technology to help visually impaired individuals become more self-sufficient and confident. Doi: 10.28991/ESJ-2023-07-05-011 Full Text: PD

    An Arabic Optical Braille Recognition System

    No full text
    Technology has shown great promise in providing access to textual information for visually impaired people. Optical Braille Recognition (OBR) allows people with visual impairments to read volumes of typewritten documents with the help of flatbed scanners and OBR software. This project looks at developing a system to recognize an image of embossed Arabic Braille and then convert it to text. It particularly aims to build fully functional Optical Arabic Braille Recognition system. It has two main tasks, first is to recognize printed Braille cells, and second is to convert them to regular text. Converting Braille to text is not simply a one to one mapping, because one cell may represent one symbol (alphabet letter, digit, or special character), two or more symbols, or part of a symbol. Moreover, multiple cells may represent a single symbol

    The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms

    Get PDF
    Sensory Substitution is a promising technique for mitigating the loss of a sensory modality. Sensory Substitution Devices (SSDs) work by converting information from the impaired sense (e.g. vision) into another, intact sense (e.g. audition). However, there are a potentially infinite number of ways of converting images into sounds and it is important that the conversion takes into account the limits of human perception and other user-related factors (e.g. whether the sounds are pleasant to listen to). The device explored here is termed “polyglot” because it generates a very large set of solutions. Specifically, we adapt a procedure that has been in widespread use in the design of technology but has rarely been used as a tool to explore perception – namely Interactive Genetic Algorithms. In this procedure, a very large range of potential sensory substitution devices can be explored by creating a set of ‘genes’ with different allelic variants (e.g. different ways of translating luminance into loudness). The most successful devices are then ‘bred’ together and we statistically explore the characteristics of the selected-for traits after multiple generations. The aim of the present study is to produce design guidelines for a better SSD. In three experiments we vary the way that the fitness of the device is computed: by asking the user to rate the auditory aesthetics of different devices (Experiment 1), by measuring the ability of participants to match sounds to images (Experiment 2) and the ability to perceptually discriminate between two sounds derived from similar images (Experiment 3). In each case the traits selected for by the genetic algorithm represent the ideal SSD for that task. Taken together, these traits can guide the design of a better SSD

    Appearance Enhancement for Visually Impaired with Projector Camera Feedback

    Get PDF
    Visually impaired is a common problem for human life in the world wide. The projector-based AR technique has ability to change appearance of real object, and it can help to improve visibility for visually impaired. We propose a new framework for the appearance enhancement with the projector camera system that employed model predictive controller. This framework enables arbitrary image processing such as photo-retouch software in the real world and it helps to improve visibility for visually impaired. In this article, we show the appearance enhancement result of Peli's method and Wolffshon's method for the low vision, Jefferson's method for color vision deficiencies. Through experiment results, the potential of our method to enhance the appearance for visually impaired was confirmed as same as appearance enhancement for the digital image and television viewing

    Accessibility-based reranking in multimedia search engines

    Get PDF
    Traditional multimedia search engines retrieve results based mostly on the query submitted by the user, or using a log of previous searches to provide personalized results, while not considering the accessibility of the results for users with vision or other types of impairments. In this paper, a novel approach is presented which incorporates the accessibility of images for users with various vision impairments, such as color blindness, cataract and glaucoma, in order to rerank the results of an image search engine. The accessibility of individual images is measured through the use of vision simulation filters. Multi-objective optimization techniques utilizing the image accessibility scores are used to handle users with multiple vision impairments, while the impairment profile of a specific user is used to select one from the Pareto-optimal solutions. The proposed approach has been tested with two image datasets, using both simulated and real impaired users, and the results verify its applicability. Although the proposed method has been used for vision accessibility-based reranking, it can also be extended for other types of personalization context

    Head-mounted displays and dynamic text presentation to aid reading in macular disease

    Get PDF
    The majority of individuals living with significant sight loss have residual vision which can be enhanced using low vision aids. Smart glasses and smartphone-based headsets, both increasing in prevalence, are proposed as a low vision aid platform. Three novel tests for measuring the visibility of displays to partially sighted users are described, along with a questionnaire for assessing subjective preference. Most individuals tested, save those with the weakest vision, were able to see and read from both a smart glasses screen and a smartphone screen mounted in a headset. The scheme for biomimetic scrolling, a text presentation strategy which translates natural eye movement into text movement, is described. It is found to enable the normally sighted to read at a rate five times that of continuous scrolling and is faster than rapid serial visual presentation for individuals with macular disease. With text presentation on the smart glasses optimised to the user, individuals with macular disease read on average 65% faster than when using their habitual optical aid. It is concluded that this aid demonstrates clear benefit over the commonly used devices and is thus recommended for further development towards widespread availability
    corecore