275 research outputs found

    Neural NILM: Deep Neural Networks Applied to Energy Disaggregation

    Get PDF
    Energy disaggregation estimates appliance-by-appliance electricity consumption from a single meter that measures the whole home's electricity demand. Recently, deep neural networks have driven remarkable improvements in classification performance in neighbouring machine learning fields such as image classification and automatic speech recognition. In this paper, we adapt three deep neural network architectures to energy disaggregation: 1) a form of recurrent neural network called `long short-term memory' (LSTM); 2) denoising autoencoders; and 3) a network which regresses the start time, end time and average power demand of each appliance activation. We use seven metrics to test the performance of these algorithms on real aggregate power data from five appliances. Tests are performed against a house not seen during training and against houses seen during training. We find that all three neural nets achieve better F1 scores (averaged over all five appliances) than either combinatorial optimisation or factorial hidden Markov models and that our neural net algorithms generalise well to an unseen house.Comment: To appear in ACM BuildSys'15, November 4--5, 2015, Seou

    Robust energy disaggregation using appliance-specific temporal contextual information

    Get PDF
    An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio

    Designing Artificial Neural Networks (ANNs) for Electrical Appliance Classification in Smart Energy Distribution Systems

    Get PDF
    En este proyecto se abordará el problema de la desagregación del consumo eléctrico a través del diseño de sistemas inteligentes, basados en redes neuronales profundas, que puedan formar parte de sistemas más amplios de gestión y distribución de energía. Durante la definición estará presente la búsqueda de una complejidad computacional adecuada que permita una implementación posterior de bajo costo. En concreto, estos sistemas realizarán el proceso de clasificación a partir de los cambios en la corriente eléctrica provocados por los distintos electrodomésticos. Para la evaluación y comparación de las diferentes propuestas se hará uso de la base de datos BLUED.This project will address the energy consumption disaggregation problem through the design of intelligent systems, based on deep artificial neural networks, which would be part of broader energy management and distribution systems. The search for adequate computational complexity that will allow a subsequent implementation of low cost will be present during algorithm definition. Specifically, these systems will carry out the classification process based on the changes caused by the different appliances in the electric current. For the evaluation and comparison of the different proposals, the BLUED database will be used.Máster Universitario en Ingeniería Industrial (M141

    Non-intrusive load monitoring of household devices using a hybrid deep learning model through convex hull-based data selection

    Get PDF
    The availability of smart meters and IoT technology has opened new opportunities, ranging from monitoring electrical energy to extracting various types of information related to household occupancy, and with the frequency of usage of different appliances. Non-intrusive load monitoring (NILM) allows users to disaggregate the usage of each device in the house using the total aggregated power signals collected from a smart meter that is typically installed in the household. It enables the monitoring of domestic appliance use without the need to install individual sensors for each device, thus minimizing electrical system complexities and associated costs. This paper proposes an NILM framework based on low frequency power data using a convex hull data selection approach and hybrid deep learning architecture. It employs a sliding window of aggregated active and reactive powers sampled at 1 Hz. A randomized approximation convex hull data selection approach performs the selection of the most informative vertices of the real convex hull. The hybrid deep learning architecture is composed of two models: a classification model based on a convolutional neural network trained with a regression model based on a bidirectional long-term memory neural network. The results obtained on the test dataset demonstrate the effectiveness of the proposed approach, achieving F1 values ranging from 0.95 to 0.99 for the four devices considered and estimation accuracy values between 0.88 and 0.98. These results compare favorably with the performance of existing approaches.This research was funded by Programa Operacional Portugal 2020 and Operational Program CRESC Algarve 2020, grant numbers 39578/2018 and 72581/2020. Antonio Ruano also acknowledges the support of Fundação para a Ciência e Tecnologia, grant UID/EMS/50022/2020, through IDMEC under LAETAinfo:eu-repo/semantics/publishedVersio

    Smart-Building Applications:Deep Learning-Based, Real-Time Load Monitoring

    Get PDF

    Deep learning applications in non-intrusive load monitoring

    Get PDF
    Non-Intrusive Load Monitoring (NILM) is a technique for inferring the power consumption of each appliance within a home from one central meter, aiding in energy conservation. In this thesis I present several Deep Learning solutions for NILM, starting with two preliminary works – A proof of concept project for multisensory NILM on a Raspberry Pi; and a fully developed NILM solution named WaveNILM. Despite their success, both methods struggled to generalize outside their training data, a common problem in NILM. To improve generalization, I designed a framework for synthesizing truly novel appliance level power signatures based on generative adversarial networks (GAN) – the main project of this thesis. This generator, named PowerGAN, is trained using a variety of GAN techniques. I present a comparison of PowerGAN to other data synthesis work in the context of NILM and demonstrate that PowerGAN is able to create truly synthetic, realistic, diverse, appliance power signatures

    Deep Learning Applications in non-intrusive load monitoring

    Get PDF
    Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home Energy Management Systems, this work will present a deep learning application in non-intrusive load monitoring on a case study in a residential home in in Gambelas, Faro in the Algarve region south of Portugal. This work has for a goal to detect type 2 appliances in different houses. For the sake of this study, two models will be trained: - Convolutional Neural Network - Long Short-term Memory Recurrent Neural Network on three datasets: - UKDale - REDD - Data from the Portuguese private residential house from the project NILM for IHEMS.No âmbito do projeto Monitorização de Carga Não Intrusiva para Sistemas Inteligentes de Gestão de Energia Doméstica, este trabalho apresentará uma aplicação de aprendizagem profunda na monitorização de carga não intrusiva num estudo de caso numa casa residencial em Gambelas, Faro na região sul do Algarve de Portugal. Este trabalho tem por objetivo detectar eletrodomésticos tipo 2 em diferentes residências. Para fins deste estudo, dois modelos serão treinados: - Rede Neural Convolucional - Rede Neural Recorrente de Memória Longa de Curto Prazo em três conjuntos de dados: - UKDale - REDD - Dados da habitação privada portuguesa do projecto NILM para IHEMS
    corecore