2,747 research outputs found

    Interval and fuzzy optimization. Applications to data envelopment analysis

    Get PDF
    Enhancing concern in the efficiency assessment of a set of peer entities termed Decision Making Units (DMUs) in many fields from industry to healthcare has led to the development of efficiency assessment models and tools. Data Envelopment Analysis (DEA) is one of the most important methodologies to measure efficiency assessment through the comparison of a group of DMUs. It permits the use of multiple inputs/outputs without any functional form. It is vastly applied to production theory in Economics and benchmarking in Operations Research. In conventional DEA models, the observed inputs and outputs possess precise and realvalued data. However, in the real world, some problems consider imprecise and integer data. For example, the number of defect-free lamps, the fleet size, the number of hospital beds or the number of staff can be represented in some cases as imprecise and integer data. This thesis considers several novel approaches for measuring the efficiency assessment of DMUs where the inputs and outputs are interval and fuzzy data. First, an axiomatic derivation of the fuzzy production possibility set is presented and a fuzzy enhanced Russell graph measure is formulated using a fuzzy arithmetic approach. The proposed approach uses polygonal fuzzy sets and LU-fuzzy partial orders and provides crisp efficiency measures (and associated efficiency ranking) as well as fuzzy efficient targets. The second approach is a new integer interval DEA, with the extension of the corresponding arithmetic and LU-partial orders to integer intervals. Also, a new fuzzy integer DEA approach for efficiency assessment is presented. The proposed approach considers a hybrid scenario involving trapezoidal fuzzy integer numbers and trapezoidal fuzzy numbers. Fuzzy integer arithmetic and partial orders are introduced. Then, using appropriate axioms, a fuzzy integer DEA technology can be derived. Finally, an inverse DEA based on the non-radial slacks-based model in the presence of uncertainty, employing both integer and continuous interval data is presented

    A Fuzzy Delphi Consensus Methodology Based on a Fuzzy Ranking

    Get PDF
    Delphi multi-round survey is a procedure that has been widely and successfully used to aggregate experts’ opinions about some previously established statements or questions. Such opinions are usually expressed as real numbers and some commentaries. The evolution of the consensus can be shown by an increase in the agreement percentages, and a decrease in the number of comments made. A consensus is reached when this percentage exceeds a certain previously set threshold. If this threshold has not been reached, the moderator modifies the questionnaire according to the comments he/she has collected, and the following round begins. In this paper, a new fuzzy Delphi method is introduced. On the one hand, the experts’ subjective judgments are collected as fuzzy numbers, enriching the approach. On the other hand, such opinions are collected through a computerized application that is able to interpret the experts’ opinions as fuzzy numbers. Finally, we employ a recently introduced fuzzy ranking methodology, satisfying many properties according to human intuition, in order to determine whether the expert’s fuzzy opinion is favorable enough (comparing with a fixed fuzzy number that indicates Agree or Strongly Agree). A cross-cultural validation was performed to illustrate the applicability of the proposed method. The proposed approach is simple for two reasons: it does not need a defuzzification step of the experts’ answers, and it can consider a wide range of fuzzy numbers not only triangular or trapezoidal fuzzy numbers

    Solving P - Norm Intuitionistic Fuzzy Programming Problem

    Full text link
    In this paper, notion of p - norm generalized trapezoidal intuitionistic fuzzy numbers is introduced. A new ranking method is introduced for p - norm generalized trapezoidal intuitionistic fuzzy numbers. Also we consider linear programming problem in intuitionistic fuzzy environment. In this problem, all the coefficients and variables are represented by p - norm generalized trapezoidal intuitionistic fuzzy numbers. To overcome the limitations of the existing methods, a new method is proposed to compute the intuitionistic fuzzy optimal solution for intuitionistic fuzzy linear programming problem. An illustrative numerical example is solved to demonstrate the efficiency of the proposed approach.Comment: some erro

    Ranking Alternatives on the Basis of the Intensity of Dominance and Fuzzy Logic within MAUT

    Get PDF
    We introduce dominance measuring methods to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision making problems on the basis of Multi-Attribute Utility Theory (MAUT). We consider the situation where the alternative performances are represented by uniformly distributed intervals, and there exists imprecision concerning the decision-makers¿ preferences, by means of classes of individual utility functions and imprecise weights represented by weight intervals or fuzzy weights, respectively. An additive multi-attribute utility model is used to evaluate the alternatives under consideration, which is considered a valid approach in most practical cases. The approaches we propose are based on the dominance values between pairs of alternatives that can be computed by linear programming, which are then transformed into dominance intensities from which a dominance intensity measure is derived. The methods proposed are compared with other existing dominance measuring methods and other methodologies by Monte Carlo simulation techniques. The performance is analyzed in terms of two measures of efficacy: hit ratio, the proportion of all cases in which the method selects the same best alternative as in the TRUE ranking, and the Rank-order correlation, which represents how similar the overall rank structures of alternatives are in the TRUE ranking and in the ranking derived from the method. The approaches are illustrated with an example consisting on the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides
    corecore