2,925 research outputs found

    Energy-Efficient Streaming Using Non-volatile Memory

    Get PDF
    The disk and the DRAM in a typical mobile system consume a significant fraction (up to 30%) of the total system energy. To save on storage energy, the DRAM should be small and the disk should be spun down for long periods of time. We show that this can be achieved for predominantly streaming workloads by connecting the disk to the DRAM via a large non-volatile memory (NVM). We refer to this as the NVM-based architecture (NVMBA); the conventional architecture with only a DRAM and a disk is referred to as DRAMBA. The NVM in the NVMBA acts as a traffic reshaper from the disk to the DRAM. The total system costs are balanced, since the cost increase due to adding the NVM is compensated by the decrease in DRAM cost. We analyze the energy saving of NVMBA, with NAND flash memory serving as NVM, relative to DRAMBA with respect to (1) the streaming demand, (2) the disk form factor, (3) the best-effort provision, and (4) the stream location on the disk. We present a worst-case analysis of the reliability of the disk drive and the flash memory, and show that a small flash capacity is sufficient to operate the system over a year at negligible cost. Disk lifetime is superior to flash, so that is of no concern

    Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs

    Get PDF

    Predictable mapping of streaming applications on multiprocessors

    Get PDF
    Het ontwerp van nieuwe consumentenelektronica wordt voortdurend complexer omdat er steeds meer functionaliteit in deze apparaten ge¨integreerd wordt. Een voorspelbaar ontwerptraject is nodig om deze complexiteit te beheersen. Het resultaat van dit ontwerptraject zou een systeem moeten zijn, waarin iedere applicatie zijn eigen taken binnen een strikte tijdslimiet kan uitvoeren, onafhankelijk van andere applicaties die hetzelfde systeem gebruiken. Dit vereist dat het tijdsgedrag van de hardware, de software, evenals hun interactie kan worden voorspeld. Er wordt vaak voorgesteld om een heterogeen multi-processor systeem (MPSoC) te gebruiken in moderne elektronische systemen. Een MP-SoC heeft voor veel applicaties een goede verhouding tussen rekenkracht en energiegebruik. Onchip netwerken (NoCs) worden voorgesteld als interconnect in deze systemen. Een NoC is schaalbaar en het biedt garanties wat betreft de hoeveelheid tijd die er nodig is om gegevens te communiceren tussen verschillende processoren en geheugens. Door het NoC te combineren met een voorspelbare strategie om de processoren en geheugens te delen, ontstaat een hardware platform met een voorspelbaar tijdsgedrag. Om een voorspelbaar systeem te verkrijgen moet ook het tijdsgedrag van een applicatie die wordt uitgevoerd op het platform voorspelbaar en analyseerbaar zijn. Het Synchronous Dataflow (SDF) model is erg geschikt voor het modelleren van applicaties die werken met gegevensstromen. Het model kan vele ontwerpbeslissingen modelleren en het is mogelijk om tijdens het ontwerptraject het tijdsgedrag van het systeem te analyseren. Dit proefschrift probeert om applicaties die gemodelleerd zijn met SDF grafen op een zodanige manier af te beelden op een NoC-gebaseerd MP-SoC, dat garanties op het tijdsgedrag van individuele applicaties gegeven kunnen worden. De doorstroomsnelheid van een applicatie is vaak een van de belangrijkste eisen bij het ontwerpen van systemen voor applicaties die werken met gegevensstromen. Deze doorstroomsnelheid wordt in hoge mate be¨invloed door de beschikbare ruimte om resultaten (gegevens) op te slaan. De opslagruimte in een SDF graaf wordt gemodelleerd door de pijlen in de graaf. Het probleem is dat er een vaste grootte voor de opslagruimte aan de pijlen van een SDF graaf moet worden toegewezen. Deze grootte moet zodanig worden gekozen dat de vereiste doorstroomsnelheid van het systeem gehaald wordt, terwijl de benodigde opslagruimte geminimaliseerd wordt. De eerste belangrijkste bijdrage van dit proefschrift is een techniek om de minimale opslagruimte voor iedere mogelijke doorstroomsnelheid van een applicatie te vinden. Ondanks de theoretische complexiteit van dit probleem presteert de techniek in praktijk goed. Doordat de techniek alle mogelijke minimale combinaties van opslagruimte en doorstroomsnelheid vindt, is het mogelijk om met situaties om te gaan waarin nog niet alle ontwerpbeslissingen zijn genomen. De ontwerpbeslissingen om twee taken van een applicatie op ´e´en processor uit te voeren, zou bijvoorbeeld de doorstroomsnelheid kunnen be¨invloeden. Hierdoor is er een onzekerheid in het begin van het ontwerptraject tussen de berekende doorstroomsnelheid en de doorstroomsnelheid die daadwerkelijk gerealiseerd kan worden als alle ontwerpbeslissingen zijn genomen. Tijdens het ontwerptraject moeten de taken waaruit een applicatie is opgebouwd toegewezen worden aan de verschillende processoren en geheugens in het systeem. Indien meerdere taken een processor delen, moet ook de volgorde bepaald worden waarin deze taken worden uitgevoerd. Een belangrijke bijdrage van dit proefschrift is een techniek die deze toewijzing uitvoert en die de volgorde bepaalt waarin taken worden uitgevoerd. Bestaande technieken kunnen alleen omgaan met taken die een ´e´en-op-´e´en relatie met elkaar hebben, dat wil zeggen, taken die een gelijk aantal keren uitgevoerd worden. In een SDF graaf kunnen ook complexere relaties worden uitgedrukt. Deze relaties kunnen omgeschreven worden naar een ´e´en-op-´e´en relatie, maar dat kan leiden tot een exponenti¨ele groei van het aantal taken in de graaf. Hierdoor kan het onmogelijk worden om in een beperkte tijd alle taken aan de processoren toe te wijzen en om de volgorde te bepalen waarin deze taken worden uitgevoerd. De techniek die in dit proefschrift wordt gepresenteerd, kan omgaan met de complexe relaties tussen taken in een SDF graaf zonder de vertaling naar de ´e´en-op-´e´en relaties te maken. Dit is mogelijk dankzij een nieuwe, effici¨ente techniek om de doorstroomsnelheid van SDF grafen te bepalen. Nadat de taken van een applicatie toegewezen zijn aan de processoren in het hardware platform moet de communicatie tussen deze taken op het NoC gepland worden. In deze planning moet voor ieder bericht dat tussen de taken wordt verstuurd, worden bepaald welke route er gebruikt wordt en wanneer de communicatie gestart wordt. Dit proefschrift introduceert drie strategie¨en voor het versturen van berichten met een strikte tijdslimiet. Alle drie de strategie¨en maken maximaal gebruik van de beschikbare vrijheid die moderne NoCs bieden. Experimenten tonen aan dat deze strategie¨en hierdoor effici¨enter omgaan met de beschikbare hardware dan bestaande strategie¨en. Naast deze strategie¨en wordt er een techniek gepresenteerd om uit de ontwerpbeslissingen die gemaakt zijn tijdens het toewijzen van taken aan de processoren alle tijdslimieten af te leiden waarbinnen de berichten over het NoC gecommuniceerd moeten worden. Deze techniek koppelt de eerder genoemde techniek voor het toewijzen van taken aan processoren aan de drie strategie¨en om berichten te versturen over het NoC. Tenslotte worden de verschillende technieken die in dit proefschrift worden ge¨introduceerd gecombineerd tot een compleet ontwerptraject. Het startpunt is een SDF graaf die een applicatie modelleert en een NoC-gebaseerd MP-SoC platform met een voorspelbaar tijdsgedrag. Het doel van het ontwerptraject is het op een zodanige manier afbeelden van de applicatie op het platform dat de doorstroomsnelheid van de applicatie gegarandeerd kan worden. Daarnaast probeert het ontwerptraject de hoeveelheid hardware die gebruikt wordt te minimaliseren. Er wordt een experiment gepresenteerd waarin drie verschillende multimedia applicaties (H.263 encoder/decoder en een MP3 decoder) op een NoCgebaseerd MP-SoC worden afgebeeld. Dit experiment toont aan dat de technieken die in dit proefschrift worden voorgesteld, gebruikt kunnen worden voor het ontwerpen van systemen met een voorspelbaar tijdsgedrag. Hiermee is het voorgestelde ontwerptraject het eerste traject dat een met een SDF-gemodelleerde applicatie op een NoC-gebaseerd MP-SoC kan afbeelden, terwijl er garanties worden gegeven over de doorstroomsnelheid van de applicatie

    Dataflow Analysis for Multiprocessor Systems with Non-Starvation-Free Schedulers

    Get PDF
    Dataflow analysis techniques are suitable for the temporal analysis of real-time stream processing applications. However, the applicability of these models is currently limited to systems with starvation-free schedulers, such as Time-Division Multiplexing (TDM) schedulers. Removal of this limitation would broaden the application domain of dataflow analysis techniques significantly. In this paper we present a temporal analysis technique for Homogeneous Synchronous Dataflow (HSDF) graphs, that is also applicable for systems with non-starvation-free schedulers. Unlike existing dataflow analysis techniques, the proposed analysis technique makes use of an enabling-jitter characterization and iterative fixed-point computation. The presented approach is applicable for arbitrary (cyclic) graph topologies. Buffer capacity constraints are taken into account during the analysis and sufficient buffer capacities can be determined afterwards. The approach presented in this paper is the first approach that considers non-starvation-free schedulers in combination with arbitrary HSDF graphs. The proposed dataflow analysis technique is implemented in a tool. This tool is used to evaluate the analysis technique using examples that illustrate some important differences with other temporal analysis methods. The case-study discusses how the method presented in this paper can be used to solve a problem with the inaccuracy of the temporal analysis results of a real-time stream processing system. This stream processing system consists of an FM receiver together with a DAB receiver application which both share a Digital Signal Processor (DSP)

    Scheduling Optimisations for SPIN to Minimise Buffer Requirements in Synchronous Data Flow

    Get PDF
    Synchronous Data flow (SDF) graphs have a simple and elegant semantics (essentially linear algebra) which makes SDF graphs eminently suitable as a vehicle for studying scheduling optimisations. We extend related work on using SPIN to experiment with scheduling optimisations aimed at minimising buffer requirements.We show that for a benchmark of commonly used case studies the performance of our SPIN based scheduler is comparable to that of state of the art research tools. The key to success is using the semantics of SDF to prove when using (even unsound and/or incomplete) optimisations are justified. The main benefit of our approach lies in gaining deep insight in the optimisations at relatively low cost

    High speed all optical networks

    Get PDF
    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail

    Optimal and probabilistic resource and capability analysis for network slice as a service

    Get PDF
    Network Slice as a Service is one of the key concepts of the fifth generation of mobile networks (5G). 5G supports new use cases, like the Internet of Things (IoT), massive Machine Type Communication (mMTC) and Ultra-Reliable and Low Latency Communication (URLLC) as well as significant improvements of the conventional Mobile Broadband (MBB) use case. In addition, safety and security critical use cases move into focus. These use cases involve diverging requirements, e.g. network reliability, latency and throughput. Network virtualization and end-to-end mobile network slicing are seen as key enablers to handle those differing requirements and providing mobile network services for the various 5G use cases and between different tenants. Network slices are isolated, virtualized, end-to-end networks optimized for specific use cases. But still they share a common physical network infrastructure. Through logical separation of the network slices on a common end-to-end mobile network infrastructure, an efficient usage of the underlying physical network infrastructure provided by multiple Mobile Service Providers (MSPs) in enabled. Due to the dynamic lifecycle of network slices there is a strong demand for efficient algorithms for the so-called Network Slice Embedding (NSE) problem. Efficient and reliable resource provisioning for Network Slicing as a Service, requires resource allocation based on a mapping of virtual network slice elements on the serving physical mobile network infrastructure. In this thesis, first of all, a formal Network Slice Instance Admission (NSIA) process is presented, based on the 3GPP standardization. This process allows to give fast feedback to a network operator or tenant on the feasibility of embedding incoming Network Slice Instance Requests (NSI-Rs). In addition, corresponding services for NSIA and feasibility checking services are defined in the context of the ETSI ZSM Reference Architecture Framework. In the main part of this work, a mathematical model for solving the NSE Problem formalized as a standardized Linear Program (LP) is presented. The presented solution provides a nearly optimal embedding. This includes the optimal subset of Network Slice Instances (NSIs) to be selected for embedding, in terms of network slice revenue and costs, and the optimal allocation of associated network slice applications, functions, services and communication links on the 5G end-to-end mobile network infrastructure. It can be used to solve the online as well as the offline NSIA problem automatically in different variants. In particular, low latency network slices require deployment of their services and applications, including Network Functions (NFs) close to the user, i.e., at the edge of the mobile network. Since the users of those services might be widely distributed and mobile, multiple instances of the same application are required to be available on numerous distributed edge clouds. A holistic approach for tackling the problem of NSE with edge computing is provided by our so-called Multiple Application Instantiation (MAI) variant of the NSE LP solution. It is capable of determining the optimal number of application instances and their optimal deployment locations on the edge clouds, even for multiple User Equipment (UE) connectivity scenarios. In addition to that multi-path, also referred to as path-splitting, scenarios with a latency sensitive objective function, which guarantees the optimal network utilization as well as minimum latency in the network slice communication, is included. Resource uncertainty, as well as reuse and overbooking of resources guaranteed by Service Level Agreements (SLAs) are discussed in this work. There is a consensus that over-provisioning of mobile communication bands is economically infeasible and certain risk of network overload is accepted for the majority of the 5G use cases. A probabilistic variant of the NSE problem with an uncertainty-aware objective function and a resource availability confidence analysis are presented. The evaluation shows the advantages and the suitability of the different variants of the NSE formalization, as well as its scalability and computational limits in a practical implementation
    corecore