402 research outputs found

    Multilayer Feedforward Neural Network for Internet Traffic Classification

    Get PDF
    Recently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has high uneven distribution of flows between the classes. In this paper, we propose a multilayer feedforward neural network architecture to handle the high imbalanced dataset. In the proposed model, we used a variation of multilayer perceptron with 4 hidden layers (called as mountain mirror networks) which does the feature transformation effectively. To check the efficacy of the proposed model, we used Cambridge dataset which consists of 248 features spread across 10 classes. Experimentation is carried out for two variants of the same dataset which is a standard one and a derived subset. The proposed model achieved an accuracy of 99.08% for highly imbalanced dataset (standard)

    Bayesian gravitation based classification for hyperspectral images.

    Get PDF
    Integration of spectral and spatial information is extremely important for the classification of high-resolution hyperspectral images (HSIs). Gravitation describes interaction among celestial bodies which can be applied to measure similarity between data for image classification. However, gravitation is hard to combine with spatial information and rarely been applied in HSI classification. This paper proposes a Bayesian Gravitation based Classification (BGC) to integrate the spectral and spatial information of local neighbors and training samples. In the BGC method, each testing pixel is first assumed as a massive object with unit volume and a particular density, where the density is taken as the data mass in BGC. Specifically, the data mass is formulated as an exponential function of the spectral distribution of its neighbors and the spatial prior distribution of its surrounding training samples based on the Bayesian theorem. Then, a joint data gravitation model is developed as the classification measure, in which the data mass is taken to weigh the contribution of different neighbors in a local region. Four benchmark HSI datasets, i.e. the Indian Pines, Pavia University, Salinas, and Grss_dfc_2014, are tested to verify the BGC method. The experimental results are compared with that of several well-known HSI classification methods, including the support vector machines, sparse representation, and other eight state-of-the-art HSI classification methods. The BGC shows apparent superiority in the classification of high-resolution HSIs and also flexibility for HSIs with limited samples

    Nuevos Modelos de Aprendizaje Híbrido para Clasificación y Ordenamiento Multi-Etiqueta

    Get PDF
    En la última década, el aprendizaje multi-etiqueta se ha convertido en una importante tarea de investigación, debido en gran parte al creciente número de problemas reales que contienen datos multi-etiqueta. En esta tesis se estudiaron dos problemas sobre datos multi-etiqueta, la mejora del rendimiento de los algoritmos en datos multi-etiqueta complejos y la mejora del rendimiento de los algoritmos a partir de datos no etiquetados. El primer problema fue tratado mediante métodos de estimación de atributos. Se evaluó la efectividad de los métodos de estimación de atributos propuestos en la mejora del rendimiento de los algoritmos de vecindad, mediante la parametrización de las funciones de distancias empleadas para recuperar los ejemplos más cercanos. Además, se demostró la efectividad de los métodos de estimación en la tarea de selección de atributos. Por otra parte, se desarrolló un algoritmo de vecindad inspirado en el enfoque de clasifcación basada en gravitación de datos. Este algoritmo garantiza un balance adecuado entre eficiencia y efectividad en su solución ante datos multi-etiqueta complejos. El segundo problema fue resuelto mediante técnicas de aprendizaje activo, lo cual permite reducir los costos del etiquetado de datos y del entrenamiento de un mejor modelo. Se propusieron dos estrategias de aprendizaje activo. La primer estrategia resuelve el problema de aprendizaje activo multi-etiqueta de una manera efectiva y eficiente, para ello se combinaron dos medidas que representan la utilidad de un ejemplo no etiquetado. La segunda estrategia propuesta se enfocó en la resolución del problema de aprendizaje activo multi-etiqueta en modo de lotes, para ello se formuló un problema multi-objetivo donde se optimizan tres medidas, y el problema de optimización planteado se resolvió mediante un algoritmo evolutivo. Como resultados complementarios derivados de esta tesis, se desarrolló una herramienta computacional que favorece la implementación de métodos de aprendizaje activo y la experimentación en esta tarea de estudio. Además, se propusieron dos aproximaciones que permiten evaluar el rendimiento de las técnicas de aprendizaje activo de una manera más adecuada y robusta que la empleada comunmente en la literatura. Todos los métodos propuestos en esta tesis han sido evaluados en un marco experimental adecuado, se utilizaron numerosos conjuntos de datos y se compararon los rendimientos de los algoritmos frente a otros métodos del estado del arte. Los resultados obtenidos, los cuales fueron verificados mediante la aplicación de test estadísticos no paramétricos, demuestran la efectividad de los métodos propuestos y de esta manera comprueban las hipótesis planteadas en esta tesis.In the last decade, multi-label learning has become an important area of research due to the large number of real-world problems that contain multi-label data. This doctoral thesis is focused on the multi-label learning paradigm. Two problems were studied, rstly, improving the performance of the algorithms on complex multi-label data, and secondly, improving the performance through unlabeled data. The rst problem was solved by means of feature estimation methods. The e ectiveness of the feature estimation methods proposed was evaluated by improving the performance of multi-label lazy algorithms. The parametrization of the distance functions with a weight vector allowed to recover examples with relevant label sets for classi cation. It was also demonstrated the e ectiveness of the feature estimation methods in the feature selection task. On the other hand, a lazy algorithm based on a data gravitation model was proposed. This lazy algorithm has a good trade-o between e ectiveness and e ciency in the resolution of the multi-label lazy learning. The second problem was solved by means of active learning techniques. The active learning methods allowed to reduce the costs of the data labeling process and training an accurate model. Two active learning strategies were proposed. The rst strategy e ectively solves the multi-label active learning problem. In this strategy, two measures that represent the utility of an unlabeled example were de ned and combined. On the other hand, the second active learning strategy proposed resolves the batch-mode active learning problem, where the aim is to select a batch of unlabeled examples that are informative and the information redundancy is minimal. The batch-mode active learning was formulated as a multi-objective problem, where three measures were optimized. The multi-objective problem was solved through an evolutionary algorithm. This thesis also derived in the creation of a computational framework to develop any active learning method and to favor the experimentation process in the active learning area. On the other hand, a methodology based on non-parametric tests that allows a more adequate evaluation of active learning performance was proposed. All methods proposed were evaluated by means of extensive and adequate experimental studies. Several multi-label datasets from di erent domains were used, and the methods were compared to the most signi cant state-of-the-art algorithms. The results were validated using non-parametric statistical tests. The evidence showed the e ectiveness of the methods proposed, proving the hypotheses formulated at the beginning of this thesis

    Adaptive Preferential Attached kNN Graph With Distribution-Awareness

    Full text link
    Graph-based kNN algorithms have garnered widespread popularity for machine learning tasks, due to their simplicity and effectiveness. However, the conventional kNN graph's reliance on a fixed value of k can hinder its performance, especially in scenarios involving complex data distributions. Moreover, like other classification models, the presence of ambiguous samples along decision boundaries often presents a challenge, as they are more prone to incorrect classification. To address these issues, we propose the Preferential Attached k-Nearest Neighbors Graph (paNNG), which combines adaptive kNN with distribution-based graph construction. By incorporating distribution information, paNNG can significantly improve performance for ambiguous samples by "pulling" them towards their original classes and hence enable enhanced overall accuracy and generalization capability. Through rigorous evaluations on diverse benchmark datasets, paNNG outperforms state-of-the-art algorithms, showcasing its adaptability and efficacy across various real-world scenarios

    Application of advanced machine learning techniques to early network traffic classification

    Get PDF
    The fast-paced evolution of the Internet is drawing a complex context which imposes demanding requirements to assure end-to-end Quality of Service. The development of advanced intelligent approaches in networking is envisioning features that include autonomous resource allocation, fast reaction against unexpected network events and so on. Internet Network Traffic Classification constitutes a crucial source of information for Network Management, being decisive in assisting the emerging network control paradigms. Monitoring traffic flowing through network devices support tasks such as: network orchestration, traffic prioritization, network arbitration and cyberthreats detection, amongst others. The traditional traffic classifiers became obsolete owing to the rapid Internet evolution. Port-based classifiers suffer from significant accuracy losses due to port masking, meanwhile Deep Packet Inspection approaches have severe user-privacy limitations. The advent of Machine Learning has propelled the application of advanced algorithms in diverse research areas, and some learning approaches have proved as an interesting alternative to the classic traffic classification approaches. Addressing Network Traffic Classification from a Machine Learning perspective implies numerous challenges demanding research efforts to achieve feasible classifiers. In this dissertation, we endeavor to formulate and solve important research questions in Machine-Learning-based Network Traffic Classification. As a result of numerous experiments, the knowledge provided in this research constitutes an engaging case of study in which network traffic data from two different environments are successfully collected, processed and modeled. Firstly, we approached the Feature Extraction and Selection processes providing our own contributions. A Feature Extractor was designed to create Machine-Learning ready datasets from real traffic data, and a Feature Selection Filter based on fast correlation is proposed and tested in several classification datasets. Then, the original Network Traffic Classification datasets are reduced using our Selection Filter to provide efficient classification models. Many classification models based on CART Decision Trees were analyzed exhibiting excellent outcomes in identifying various Internet applications. The experiments presented in this research comprise a comparison amongst ensemble learning schemes, an exploratory study on Class Imbalance and solutions; and an analysis of IP-header predictors for early traffic classification. This thesis is presented in the form of compendium of JCR-indexed scientific manuscripts and, furthermore, one conference paper is included. In the present work we study a wide number of learning approaches employing the most advance methodology in Machine Learning. As a result, we identify the strengths and weaknesses of these algorithms, providing our own solutions to overcome the observed limitations. Shortly, this thesis proves that Machine Learning offers interesting advanced techniques that open prominent prospects in Internet Network Traffic Classification.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione
    corecore