232 research outputs found

    Analytical Characterization and Optimum Detection of Nonlinear Multicarrier Schemes

    Get PDF
    It is widely recognized that multicarrier systems such as orthogonal frequency division multiplexing (OFDM) are suitable for severely time-dispersive channels. However, it is also recognized that multicarrier signals have high envelope fluctuations which make them especially sensitive to nonlinear distortion effects. In fact, it is almost unavoidable to have nonlinear distortion effects in the transmission chain. For this reason, it is essential to have a theoretical, accurate characterization of nonlinearly distorted signals not only to evaluate the corresponding impact of these distortion effects on the system’s performance, but also to develop mechanisms to combat them. One of the goals of this thesis is to address these challenges and involves a theoretical characterization of nonlinearly distorted multicarrier signals in a simple, accurate way. The other goal of this thesis is to study the optimum detection of nonlinearly distorted, multicarrier signals. Conventionally, nonlinear distortion is seen as a noise term that degrades the system’s performance, leading even to irreducible error floors. Even receivers that try to estimate and cancel it have a poor performance, comparatively to the performance associated to a linear transmission, even with perfect cancellation of nonlinear distortion effects. It is shown that the nonlinear distortion should not be considered as a noise term, but instead as something that contains useful information for detection purposes. The adequate receiver to take advantage of this information is the optimum receiver, since it makes a block-by-block detection, allowing us to exploit the nonlinear distortion which is spread along the signal’s band. Although the optimum receiver for nonlinear multicarrier schemes is too complex, due to its necessity to compare the received signal with all possible transmitted sequences, it is important to study its potential performance gains. In this thesis, it is shown that the optimum receiver outperforms the conventional detection, presenting gains not only relatively to conventional receivers that deal with nonlinear multicarrier signals, but also relatively to conventional receivers that deal with linear, multicarrier signals. We also present sub-optimum receivers which are able to approach the performance gains associated to the optimum detection and that can even outperform the conventional linear, multicarrier schemes

    Analysis of Alternative Metrics for the PAPR Problem in OFDM Transmission

    Full text link
    The effective PAPR of the transmit signal is the standard metric to capture the effect of nonlinear distortion in OFDM transmission. A common rule of thumb is the log(N)(N) barrier where NN is the number of subcarriers which has been theoretically analyzed by many authors. Recently, new alternative metrics have been proposed in practice leading potentially to different system design rules which are theoretically analyzed in this paper. One of the main findings is that, most surprisingly, the log(N)(N) barrier turns out to be much too conservative: e.g. for the so-called amplifier-oriented metric the scaling is rather log[log(N)]\log[ \log(N)]. To prove this result, new upper bounds on the PAPR distribution for coded systems are presented as well as a theorem relating PAPR results to these alternative metrics.Comment: 5 pages, IEEE International Symposium on Information Theory (ISIT), 2011, accepted for publicatio

    A General Framework for Transmission with Transceiver Distortion and Some Applications

    Full text link
    A general theoretical framework is presented for analyzing information transmission over Gaussian channels with memoryless transceiver distortion, which encompasses various nonlinear distortion models including transmit-side clipping, receive-side analog-to-digital conversion, and others. The framework is based on the so-called generalized mutual information (GMI), and the analysis in particular benefits from the setup of Gaussian codebook ensemble and nearest-neighbor decoding, for which it is established that the GMI takes a general form analogous to the channel capacity of undistorted Gaussian channels, with a reduced "effective" signal-to-noise ratio (SNR) that depends on the nominal SNR and the distortion model. When applied to specific distortion models, an array of results of engineering relevance is obtained. For channels with transmit-side distortion only, it is shown that a conventional approach, which treats the distorted signal as the sum of the original signal part and a uncorrelated distortion part, achieves the GMI. For channels with output quantization, closed-form expressions are obtained for the effective SNR and the GMI, and related optimization problems are formulated and solved for quantizer design. Finally, super-Nyquist sampling is analyzed within the general framework, and it is shown that sampling beyond the Nyquist rate increases the GMI for all SNR. For example, with a binary symmetric output quantization, information rates exceeding one bit per channel use are achievable by sampling the output at four times the Nyquist rate.Comment: 32 pages (including 4 figures, 5 tables, and auxiliary materials); submitted to IEEE Transactions on Communication

    Superposition coded modulation with peak-power limitation

    Get PDF
    We apply clipping to superposition coded modulation (SCM) systems to reduce the peak-to-average power ratio (PAPR) of the transmitted signal. The impact on performance is investigated by evaluating the mutual information driven by the induced peak-power-limited input signals. It is shown that the rate loss is marginal for moderate clipping thresholds if optimal encoding/decoding is used. This fact is confirmed in examples where capacityapproaching component codes are used together with the maximum a posteriori probability (MAP) detection. In order to reduce the detection complexity of SCM with a large number of layers, we develop a suboptimal soft compensation (SC) method that is combined with soft-input soft-output (SISO) decoding algorithms in an iterative manner. A variety of simulation results for additive white Gaussian noise (AWGN) and fading channels are presented. It is shown that with the proposed method, the effect of clipping can be efficiently compensated and a good tradeoff between PAPR and bit-error rate (BER) can be achieved. Comparisons with other coded modulation schemes demonstrate that SCM offers significant advantages for high-rate transmissions over fading channels

    Peak-to-Average-Power-Ratio (PAPR) Reduction Techniques for Orthogonal-Frequency-Division- Multiplexing (OFDM) Transmission

    Get PDF
    Wireless communication has experienced an incredible growth in the last decade. Two decades ago,the number of mobile subscribers was less than 1% of the world\u27s population. As of 2011, the number of mobile subscribers has increased tremendously to 79.86% of the world\u27s population. Robust and high-rate data transmission in mobile environments faces severe problems due to the time-variant channel conditions, multipath fading and shadow fading. Fading is the main limitation on wireless communication channels. Frequency selective interference and fading, such as multipath fading, is a bandwidth bottleneck in the last mile which runs from the access point to the user. The last mile problem in wireless communication networks is caused by the environment of free space channels through which the signal propagates. Orthogonal Frequency Division Multiplexing (OFDM) is a promising modulation and multiplexing technique due to its robustness against multipath fading. Nevertheless, OFDM suffers from high Peak-to-Average- Power-Ratio (PAPR), which results in a complex OFDM signal. In this research, reduction of PAPR considering the out-of-band radiation and the regeneration of the time-domain signal peaks caused by filtering has been studied and is presented. Our PAPR reduction was 30% of the Discrete Fourier Transform (DFT) with Interleaved Frequency Division Multiple Access (IFDMA) utilizing Quadrature Phase Shift Keying (QPSK) and varying the roll-off factor. We show that pulse shaping does not affect the PAPR of Localized Frequency Division Multiple Access (LFDMA) as much as it affects the PAPR of IFDMA. Therefore, IFDMA has an important trade-off relationship between excess bandwidth and PAPR performance, since excess bandwidth increases as the roll-off factor increases. In addition, we studied a low complexity clipping scheme, applicable to IFDMA uplink and OFDM downlink systems for PAPR reduction. We show that the performance of the PAPR of the Interleaved-FDMA scheme is better than traditional OFDMA for the uplink transmission system. Our reduction of PAPR is 53% when IFDMA is used instead of OFDMA in the uplink direction. Furthermore, we also examined an important trade-off relationship between clipping distortion and quantization noise when the clipping scheme is used for OFDM downlink systems. Our results show a significant reduction in the PAPR and the out-of-band radiation caused by clipping for OFDM downlink transmission system

    Joint Impact of Frequency Synchronization Errors and Intermodulation Distortion on the Performance of Multicarrier DS-CDMA Systems

    Get PDF
    The performance of multicarrier systems is highly impaired by intercarrier interference (ICI) due to frequency synchronization errors at the receiver and by intermodulation distortion (IMD) introduced by a nonlinear amplifier (NLA) at the transmitter. In this paper, we evaluate the bit-error rate (BER) of multicarrier direct-sequence code-division multiple-access (MC-DS-CDMA) downlink systems subject to these impairments in frequency-selective Rayleigh fading channels, assuming quadrature amplitude modulation (QAM). The analytical findings allow to establish the sensitivity of MC-DS-CDMA systems to carrier frequency offset (CFO) and NLA distortions, to identify the maximum CFO that is tolerable at the receiver side in different scenarios, and to find out the optimum value of the NLA output power backoff for a given CFO. Simulation results show that the approximated analysis is quite accurate in several conditions

    PAPR Reduction in Multicarrier Communication Systems Using Efficient Pulse Shaping Technique

    Get PDF
    Emerging multicarrier modulation schemes have been considered for the fifth generation (5G) communication systems. However, existing designs often suffer from a high peak-to-average power ratio (PAPR) in the transmitted signal. This thesis aims to (i) design pulse shaping filters to reduce the PAPR using computationally efficient optimisation approach (ii) investigate the performance of the multicarrier systems employing the designed filter and (iii) study the power utilisation efficiency of the nonlinear amplifier with the use of the designed filters

    NOVEL OFDM SYSTEM BASED ON DUAL-TREE COMPLEX WAVELET TRANSFORM

    Get PDF
    The demand for higher and higher capacity in wireless networks, such as cellular, mobile and local area network etc, is driving the development of new signaling techniques with improved spectral and power efficiencies. At all stages of a transceiver, from the bandwidth efficiency of the modulation schemes through highly nonlinear power amplifier of the transmitters to the channel sharing between different users, the problems relating to power usage and spectrum are aplenty. In the coming future, orthogonal frequency division multiplexing (OFDM) technology promises to be a ready solution to achieving the high data capacity and better spectral efficiency in wireless communication systems by virtue of its well-known and desirable characteristics. Towards these ends, this dissertation investigates a novel OFDM system based on dual-tree complex wavelet transform (D
    corecore