32,586 research outputs found

    Conceptual Spaces in Object-Oriented Framework

    Get PDF
    The aim of this paper is to show that the middle level of mental representations in a conceptual spaces framework is consistent with the OOP paradigm. We argue that conceptual spaces framework together with vague prototype theory of categorization appears to be the most suitable solution for modeling the cognitive apparatus of humans, and that the OOP paradigm can be easily and intuitively reconciled with this framework. First, we show that the prototypebased OOP approach is consistent with GĂ€rdenfors’ model in terms of structural coherence. Second, we argue that the product of cloning process in a prototype-based model is in line with the structure of categories in GĂ€rdenfors’ proposal. Finally, in order to make the fuzzy object-oriented model consistent with conceptual space, we demonstrate how to define membership function in a more cognitive manner, i.e. in terms of similarity to prototype

    Measuring Relations Between Concepts In Conceptual Spaces

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by regions in this space. Our recent mathematical formalization of this framework is capable of representing correlations between different domains in a geometric way. In this paper, we extend our formalization by providing quantitative mathematical definitions for the notions of concept size, subsethood, implication, similarity, and betweenness. This considerably increases the representational power of our formalization by introducing measurable ways of describing relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial text overlap with arXiv:1707.05165, arXiv:1706.0636

    A Fuzzy Approach to Text Segmentation in Web Images Based on Human Colour Perception

    No full text
    This chapter describes a new approach for the segmentation of text in images on Web pages. In the same spirit as the authors’ previous work on this subject, this approach attempts to model the ability of humans to differentiate between colours. In this case, pixels of similar colour are first grouped using a colour distance defined in a perceptually uniform colour space (as opposed to the commonly used RGB). The resulting colour connected components are then grouped to form larger (character-like) regions with the aid of a propinquity measure, which is the output of a fuzzy inference system. This measure expresses the likelihood for merging two components based on two features. The first feature is the colour distance between the components, in the L*a*b* colour space. The second feature expresses the topological relationship of two components. The results of the method indicate a better performance than previous methods devised by the authors and possibly better (a direct comparison is not really possible due to the differences in application domain characteristics between this and previous methods) performance to other existing methods

    Fuzzy Supernova Templates I: Classification

    Full text link
    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN datasets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light curve templates to classify SN objects. In the first case we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes Fuzzy Set Theory for the definition and combination of SN light curve models. For well-sampled light curves with a modest signal to noise ratio (S/N>10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with 98% accuracy. In addition, the SOFT method has the potential to classify supernovae into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method is verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.Comment: 26 pages, 12 figures. Accepted to Ap

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures
    • 

    corecore