127 research outputs found

    Engineering shortest paths and layout algorithms for large graphs

    Get PDF

    Contours in Visualization

    Get PDF
    This thesis studies the visualization of set collections either via or defines as the relations among contours. In the first part, dynamic Euler diagrams are used to communicate and improve semimanually the result of clustering methods which allow clusters to overlap arbitrarily. The contours of the Euler diagram are rendered as implicit surfaces called blobs in computer graphics. The interaction metaphor is the moving of items into or out of these blobs. The utility of the method is demonstrated on data arising from the analysis of gene expressions. The method works well for small datasets of up to one hundred items and few clusters. In the second part, these limitations are mitigated employing a GPU-based rendering of Euler diagrams and mixing textures and colors to resolve overlapping regions better. The GPU-based approach subdivides the screen into triangles on which it performs a contour interpolation, i.e. a fragment shader determines for each pixel which zones of an Euler diagram it belongs to. The rendering speed is thus increased to allow multiple hundred items. The method is applied to an example comparing different document clustering results. The contour tree compactly describes scalar field topology. From the viewpoint of graph drawing, it is a tree with attributes at vertices and optionally on edges. Standard tree drawing algorithms emphasize structural properties of the tree and neglect the attributes. Adapting popular graph drawing approaches to the problem of contour tree drawing it is found that they are unable to convey this information. Five aesthetic criteria for drawing contour trees are proposed and a novel algorithm for drawing contour trees in the plane that satisfies four of these criteria is presented. The implementation is fast and effective for contour tree sizes usually used in interactive systems and also produces readable pictures for larger trees. Dynamical models that explain the formation of spatial structures of RNA molecules have reached a complexity that requires novel visualization methods to analyze these model\''s validity. The fourth part of the thesis focuses on the visualization of so-called folding landscapes of a growing RNA molecule. Folding landscapes describe the energy of a molecule as a function of its spatial configuration; they are huge and high dimensional. Their most salient features are described by their so-called barrier tree -- a contour tree for discrete observation spaces. The changing folding landscapes of a growing RNA chain are visualized as an animation of the corresponding barrier tree sequence. The animation is created as an adaption of the foresight layout with tolerance algorithm for dynamic graph layout. The adaptation requires changes to the concept of supergraph and it layout. The thesis finishes with some thoughts on how these approaches can be combined and how the task the application should support can help inform the choice of visualization modality

    Automatic Retrieval of Skeletal Structures of Trees from Terrestrial Laser Scanner Data

    Get PDF
    Research on forest ecosystems receives high attention, especially nowadays with regard to sustainable management of renewable resources and the climate change. In particular, accurate information on the 3D structure of a tree is important for forest science and bioclimatology, but also in the scope of commercial applications. Conventional methods to measure geometric plant features are labor- and time-intensive. For detailed analysis, trees have to be cut down, which is often undesirable. Here, Terrestrial Laser Scanning (TLS) provides a particularly attractive tool because of its contactless measurement technique. The object geometry is reproduced as a 3D point cloud. The objective of this thesis is the automatic retrieval of the spatial structure of trees from TLS data. We focus on forest scenes with comparably high stand density and with many occlusions resulting from it. The varying level of detail of TLS data poses a big challenge. We present two fully automatic methods to obtain skeletal structures from scanned trees that have complementary properties. First, we explain a method that retrieves the entire tree skeleton from 3D data of co-registered scans. The branching structure is obtained from a voxel space representation by searching paths from branch tips to the trunk. The trunk is determined in advance from the 3D points. The skeleton of a tree is generated as a 3D line graph. Besides 3D coordinates and range, a scan provides 2D indices from the intensity image for each measurement. This is exploited in the second method that processes individual scans. Furthermore, we introduce a novel concept to manage TLS data that facilitated the researchwork. Initially, the range image is segmented into connected components. We describe a procedure to retrieve the boundary of a component that is capable of tracing inner depth discontinuities. A 2D skeleton is generated from the boundary information and used to decompose the component into sub components. A Principal Curve is computed from the 3D point set that is associated with a sub component. The skeletal structure of a connected component is summarized as a set of polylines. Objective evaluation of the results remains an open problem because the task itself is ill-defined: There exists no clear definition of what the true skeleton should be w.r.t. a given point set. Consequently, we are not able to assess the correctness of the methods quantitatively, but have to rely on visual assessment of results and provide a thorough discussion of the particularities of both methods. We present experiment results of both methods. The first method efficiently retrieves full skeletons of trees, which approximate the branching structure. The level of detail is mainly governed by the voxel space and therefore, smaller branches are reproduced inadequately. The second method retrieves partial skeletons of a tree with high reproduction accuracy. The method is sensitive to noise in the boundary, but the results are very promising. There are plenty of possibilities to enhance the method’s robustness. The combination of the strengths of both presented methods needs to be investigated further and may lead to a robust way to obtain complete tree skeletons from TLS data automatically.Die Erforschung des ÖkosystemsWald spielt gerade heutzutage im Hinblick auf den nachhaltigen Umgang mit nachwachsenden Rohstoffen und den Klimawandel eine große Rolle. Insbesondere die exakte Beschreibung der dreidimensionalen Struktur eines Baumes ist wichtig für die Forstwissenschaften und Bioklimatologie, aber auch im Rahmen kommerzieller Anwendungen. Die konventionellen Methoden um geometrische Pflanzenmerkmale zu messen sind arbeitsintensiv und zeitaufwändig. Für eine genaue Analyse müssen Bäume gefällt werden, was oft unerwünscht ist. Hierbei bietet sich das Terrestrische Laserscanning (TLS) als besonders attraktives Werkzeug aufgrund seines kontaktlosen Messprinzips an. Die Objektgeometrie wird als 3D-Punktwolke wiedergegeben. Basierend darauf ist das Ziel der Arbeit die automatische Bestimmung der räumlichen Baumstruktur aus TLS-Daten. Der Fokus liegt dabei auf Waldszenen mit vergleichsweise hoher Bestandesdichte und mit zahlreichen daraus resultierenden Verdeckungen. Die Auswertung dieser TLS-Daten, die einen unterschiedlichen Grad an Detailreichtum aufweisen, stellt eine große Herausforderung dar. Zwei vollautomatische Methoden zur Generierung von Skelettstrukturen von gescannten Bäumen, welche komplementäre Eigenschaften besitzen, werden vorgestellt. Bei der ersten Methode wird das Gesamtskelett eines Baumes aus 3D-Daten von registrierten Scans bestimmt. Die Aststruktur wird von einer Voxelraum-Repräsentation abgeleitet indem Pfade von Astspitzen zum Stamm gesucht werden. Der Stamm wird im Voraus aus den 3D-Punkten rekonstruiert. Das Baumskelett wird als 3D-Liniengraph erzeugt. Für jeden gemessenen Punkt stellt ein Scan neben 3D-Koordinaten und Distanzwerten auch 2D-Indizes zur Verfügung, die sich aus dem Intensitätsbild ergeben. Bei der zweiten Methode, die auf Einzelscans arbeitet, wird dies ausgenutzt. Außerdem wird ein neuartiges Konzept zum Management von TLS-Daten beschrieben, welches die Forschungsarbeit erleichtert hat. Zunächst wird das Tiefenbild in Komponenten aufgeteilt. Es wird eine Prozedur zur Bestimmung von Komponentenkonturen vorgestellt, die in der Lage ist innere Tiefendiskontinuitäten zu verfolgen. Von der Konturinformation wird ein 2D-Skelett generiert, welches benutzt wird um die Komponente in Teilkomponenten zu zerlegen. Von der 3D-Punktmenge, die mit einer Teilkomponente assoziiert ist, wird eine Principal Curve berechnet. Die Skelettstruktur einer Komponente im Tiefenbild wird als Menge von Polylinien zusammengefasst. Die objektive Evaluation der Resultate stellt weiterhin ein ungelöstes Problem dar, weil die Aufgabe selbst nicht klar erfassbar ist: Es existiert keine eindeutige Definition davon was das wahre Skelett in Bezug auf eine gegebene Punktmenge sein sollte. Die Korrektheit der Methoden kann daher nicht quantitativ beschrieben werden. Aus diesem Grund, können die Ergebnisse nur visuell beurteiltwerden. Weiterhinwerden die Charakteristiken beider Methoden eingehend diskutiert. Es werden Experimentresultate beider Methoden vorgestellt. Die erste Methode bestimmt effizient das Skelett eines Baumes, welches die Aststruktur approximiert. Der Detaillierungsgrad wird hauptsächlich durch den Voxelraum bestimmt, weshalb kleinere Äste nicht angemessen reproduziert werden. Die zweite Methode rekonstruiert Teilskelette eines Baums mit hoher Detailtreue. Die Methode reagiert sensibel auf Rauschen in der Kontur, dennoch sind die Ergebnisse vielversprechend. Es gibt eine Vielzahl von Möglichkeiten die Robustheit der Methode zu verbessern. Die Kombination der Stärken von beiden präsentierten Methoden sollte weiter untersucht werden und kann zu einem robusteren Ansatz führen um vollständige Baumskelette automatisch aus TLS-Daten zu generieren

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés

    A Unified Framework for Parallel Anisotropic Mesh Adaptation

    Get PDF
    Finite-element methods are a critical component of the design and analysis procedures of many (bio-)engineering applications. Mesh adaptation is one of the most crucial components since it discretizes the physics of the application at a relatively low cost to the solver. Highly scalable parallel mesh adaptation methods for High-Performance Computing (HPC) are essential to meet the ever-growing demand for higher fidelity simulations. Moreover, the continuous growth of the complexity of the HPC systems requires a systematic approach to exploit their full potential. Anisotropic mesh adaptation captures features of the solution at multiple scales while, minimizing the required number of elements. However, it also introduces new challenges on top of mesh generation. Also, the increased complexity of the targeted cases requires departing from traditional surface-constrained approaches to utilizing CAD (Computer-Aided Design) kernels. Alongside the functionality requirements, is the need of taking advantage of the ubiquitous multi-core machines. More importantly, the parallel implementation needs to handle the ever-increasing complexity of the mesh adaptation code. In this work, we develop a parallel mesh adaptation method that utilizes a metric-based approach for generating anisotropic meshes. Moreover, we enhance our method by interfacing with a CAD kernel, thus enabling its use on complex geometries. We evaluate our method both with fixed-resolution benchmarks and within a simulation pipeline, where the resolution of the discretization increases incrementally. With the Telescopic Approach for scalable mesh generation as a guide, we propose a parallel method at the node (multi-core) for mesh adaptation that is expected to scale up efficiently to the upcoming exascale machines. To facilitate an effective implementation, we introduce an abstract layer between the application and the runtime system that enables the use of task-based parallelism for concurrent mesh operations. Our evaluation indicates results comparable to state-of-the-art methods for fixed-resolution meshes both in terms of performance and quality. The integration with an adaptive pipeline offers promising results for the capability of the proposed method to function as part of an adaptive simulation. Moreover, our abstract tasking layer allows the separation of different aspects of the implementation without any impact on the functionality of the method

    Granite: A scientific database model and implementation

    Get PDF
    The principal goal of this research was to develop a formal comprehensive model for representing highly complex scientific data. An effective model should provide a conceptually uniform way to represent data and it should serve as a framework for the implementation of an efficient and easy-to-use software environment that implements the model. The dissertation work presented here describes such a model and its contributions to the field of scientific databases. In particular, the Granite model encompasses a wide variety of datatypes used across many disciplines of science and engineering today. It is unique in that it defines dataset geometry and topology as separate conceptual components of a scientific dataset. We provide a novel classification of geometries and topologies that has important practical implications for a scientific database implementation. The Granite model also offers integrated support for multiresolution and adaptive resolution data. Many of these ideas have been addressed by others, but no one has tried to bring them all together in a single comprehensive model. The datasource portion of the Granite model offers several further contributions. In addition to providing a convenient conceptual view of rectilinear data, it also supports multisource data. Data can be taken from various sources and combined into a unified view. The rod storage model is an abstraction for file storage that has proven an effective platform upon which to develop efficient access to storage. Our spatial prefetching technique is built upon the rod storage model, and demonstrates very significant improvement in access to scientific datasets, and also allows machines to access data that is far too large to fit in main memory. These improvements bring the extremely large datasets now being generated in many scientific fields into the realm of tractability for the ordinary researcher. We validated the feasibility and viability of the model by implementing a significant portion of it in the Granite system. Extensive performance evaluations of the implementation indicate that the features of the model can be provided in a user-friendly manner with an efficiency that is competitive with more ad hoc systems and more specialized application specific solutions

    Site Controller: A System for Computer-Aided Civil Engineering and Construction

    Get PDF
    A revolution\0\0\0 in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in bulldozers, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here. SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, roads, hydrology, etc. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project

    Passage Ă  l'Ă©chelle pour les mondes virtuels

    Get PDF
    Virtual worlds attract millions of users and these popular applications --supported by gigantic data centers with myriads of processors-- are routinely accessed. However, surprisingly, virtual worlds are still unable to host simultaneously more than a few hundred users in the same contiguous space.The main contribution of the thesis is Kiwano, a distributed system enabling an unlimited number of avatars to simultaneously evolve and interact in a contiguous virtual space. In Kiwano we employ the Delaunay triangulation to provide each avatar with a constant number of neighbors independently of their density or distribution. The avatar-to-avatar interactions and related computations are then bounded, allowing the system to scale. The load is constantly balanced among Kiwano's nodes which adapt and take in charge sets of avatars according to their geographic proximity. The optimal number of avatars per CPU and the performances of our system have been evaluated simulating tens of thousands of avatars connecting to a Kiwano instance running across several data centers, with results well beyond the current state-of-the-art.We also propose Kwery, a distributed spatial index capable to scale dynamic objects of virtual worlds. Kwery performs efficient reverse geolocation queries on large numbers of moving objects updating their position at arbitrary high frequencies. We use a distributed spatial index on top of a self-adaptive tree structure. Each node of the system hosts and answers queries on a group of objects in a zone, which is the minimal axis-aligned rectangle. They are chosen based on their proximity and the load of the node. Spatial queries are then answered only by the nodes with meaningful zones, that is, where the node's zone intersects the query zone.Kiwano has been successfully implemented for HybridEarth, a mixed reality world, Manycraft, our scalable multiplayer Minecraft map, and discussed for OneSim, a distributed Second Life architecture. By handling avatars separately, we show interoperability between these virtual worlds.With Kiwano and Kwery we provide the first massively distributed and self-adaptive solutions for virtual worlds suitable to run in the cloud. The results, in terms of number of avatars per CPU, exceed by orders of magnitude the performances of current state-of-the-art implementations. This indicates Kiwano to be a cost effective solution for the industry. The open API for our first implementation is available at \url{http://kiwano.li}.La réalité mixe, les jeux en ligne massivement multijoueur (MMOGs), les mondes virtuels et le cyberespace sont des concepts extrêmement attractifs. Mais leur déploiement à large échelle reste difficile et il est en conséquence souvent évité.La contribution principale de la thèse réside dans le système distribué Kiwano, qui permet à un nombre illimité d'avatars de peupler et d'interagir simultanément dans un même monde contigu. Dans Kiwano nous utilisons la triangulation de Delaunay pour fournir à chaque avatar un nombre constant de voisins en moyenne, indépendamment de leur densité ou distribution géographique. Le nombre d'interactions entre les avatars et les calculs inhérents sont bornés, ce qui permet le passage à l'échelle du système.La charge est repartie sur plusieurs machines qui regroupent sur un même nœud les avatars voisins de façon contiguë dans le graphe de Delaunay. L'équilibrage de la charge se fait de manière contiguë et dynamique, en suivant la philosophie des réseaux pair-à-pair (peer-to-peer overlays). Cependant ce principe est adapté au contexte de l'informatique dématérialisée (cloud computing).Le nombre optimal d'avatars par CPU et les performances de notre système ont été évalués en simulant des dizaines de milliers d'avatars connectés à la même instance de Kiwano tournant à travers plusieurs centres de traitement de données.Nous proposons également trois applications concrètes qui utilisent Kiwano : Manycraft est une architecture distribuée capable de supporter un nombre arbitrairement grand d'utilisateurs cohabitant dans le même espace Minecraft, OneSim, qui permet à un nombre illimité d'usagers d'être ensemble dans la même région de Second Life et HybridEarth, un monde en réalité mixte où avatars et personnes physiques sont présents et interagissent dans un même espace: la Terre

    Texture-Based Segmentation and Finite Element Mesh Generation for Heterogeneous Biological Image Data

    Get PDF
    The design, analysis, and control of bio-systems remain an engineering challenge. This is mainly due to the material heterogeneity, boundary irregularity, and nonlinear dynamics associated with these systems. The recent developments in imaging techniques and stochastic upscaling methods provides a window of opportunity to more accurately assess these bio-systems than ever before. However, the use of image data directly in upscaled stochastic framework can only be realized by the development of certain intermediate steps. The goal of the research presented in this dissertation is to develop a texture-segmentation method and a unstructured mesh generation for heterogeneous image data. The following two new techniques are described and evaluated in this dissertation: 1. A new texture-based segmentation method, using the stochastic continuum concepts and wavelet multi-resolution analysis, is developed for characterization of heterogeneous materials in image data. The feature descriptors are developed to efficiently capture the micro-scale heterogeneity of macro-scale entities. The materials are then segmented at a representative elementary scale at which the statistics of the feature descriptor stabilize. 2. A new unstructured mesh generation technique for image data is developed using a hierarchical data structure. This representation allows for generating quality guaranteed finite element meshes. The framework for both the methods presented in this dissertation, as such, allows them for extending to higher dimensions. The experimental results using these methods conclude them to be promising tools for unifying data processing concepts within the upscaled stochastic framework across biological systems. These are targeted for inclusion in decision support systems where biological image data, simulation techniques and artificial intelligence will be used conjunctively and uniformly to assess bio-system quality and design effective and appropriate treatments that restore system health
    • …
    corecore