179,055 research outputs found

    Set-up and characterization of a humidity sensor realized in LTCC-technology

    Get PDF
    A new type of integrated temperature and humidity sensor applying LTCC-technology has been developed and characterized. In this approach, sensing elements are implemented using heated metal resistors (Pt-elements), where one is exposed to the humid environment that causes the sensor element to cool down with increased humidity, while the other one is sealed from the environment. Sensor design is based on FEA (Finite Element Analyses) where the critical design parameters have been analyzed with regard to the performance characteristic of the device. The set-up of sensor element will be shown and the functional capability will be demonstrated by experimental results.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation

    Get PDF
    In this paper we improve traditional steepest descent methods for the direct minimization of the Gross-Pitaevskii (GP) energy with rotation at two levels. We first define a new inner product to equip the Sobolev space H1H^1 and derive the corresponding gradient. Secondly, for the treatment of the mass conservation constraint, we use a projection method that avoids more complicated approaches based on modified energy functionals or traditional normalization methods. The descent method with these two new ingredients is studied theoretically in a Hilbert space setting and we give a proof of the global existence and convergence in the asymptotic limit to a minimizer of the GP energy. The new method is implemented in both finite difference and finite element two-dimensional settings and used to compute various complex configurations with vortices of rotating Bose-Einstein condensates. The new Sobolev gradient method shows better numerical performances compared to classical L2L^2 or H1H^1 gradient methods, especially when high rotation rates are considered.Comment: to appear in SIAM J Sci Computin

    Recent developments in the Suzuki-Miyaura reaction: 2010-2014

    Get PDF
    The Suzuki-Miyaura reaction (SMR), involving the coupling of an organoboron reagent and an organic halide or pseudo-halide in the presence of a palladium or nickel catalyst and a base, has arguably become one of most utilized tools for the construction of a C-C bond. This review intends to be general account of all types of catalytic systems, new coupling partners and applications, including the literature between September 2010 and December 2014
    corecore