134 research outputs found

    Overview of BioCreative II gene normalization

    Get PDF
    Background: The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%. Results: Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers. Conclusion: Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases

    Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues

    Get PDF
    BACKGROUND: Word sense disambiguation (WSD) is critical in the biomedical domain for improving the precision of natural language processing (NLP), text mining, and information retrieval systems because ambiguous words negatively impact accurate access to literature containing biomolecular entities, such as genes, proteins, cells, diseases, and other important entities. Automated techniques have been developed that address the WSD problem for a number of text processing situations, but the problem is still a challenging one. Supervised WSD machine learning (ML) methods have been applied in the biomedical domain and have shown promising results, but the results typically incorporate a number of confounding factors, and it is problematic to truly understand the effectiveness and generalizability of the methods because these factors interact with each other and affect the final results. Thus, there is a need to explicitly address the factors and to systematically quantify their effects on performance. RESULTS: Experiments were designed to measure the effect of "sample size" (i.e. size of the datasets), "sense distribution" (i.e. the distribution of the different meanings of the ambiguous word) and "degree of difficulty" (i.e. the measure of the distances between the meanings of the senses of an ambiguous word) on the performance of WSD classifiers. Support Vector Machine (SVM) classifiers were applied to an automatically generated data set containing four ambiguous biomedical abbreviations: BPD, BSA, PCA, and RSV, which were chosen because of varying degrees of differences in their respective senses. Results showed that: 1) increasing the sample size generally reduced the error rate, but this was limited mainly to well-separated senses (i.e. cases where the distances between the senses were large); in difficult cases an unusually large increase in sample size was needed to increase performance slightly, which was impractical, 2) the sense distribution did not have an effect on performance when the senses were separable, 3) when there was a majority sense of over 90%, the WSD classifier was not better than use of the simple majority sense, 4) error rates were proportional to the similarity of senses, and 5) there was no statistical difference between results when using a 5-fold or 10-fold cross-validation method. Other issues that impact performance are also enumerated. CONCLUSION: Several different independent aspects affect performance when using ML techniques for WSD. We found that combining them into one single result obscures understanding of the underlying methods. Although we studied only four abbreviations, we utilized a well-established statistical method that guarantees the results are likely to be generalizable for abbreviations with similar characteristics. The results of our experiments show that in order to understand the performance of these ML methods it is critical that papers report on the baseline performance, the distribution and sample size of the senses in the datasets, and the standard deviation or confidence intervals. In addition, papers should also characterize the difficulty of the WSD task, the WSD situations addressed and not addressed, as well as the ML methods and features used. This should lead to an improved understanding of the generalizablility and the limitations of the methodology

    Knowledge-driven entity recognition and disambiguation in biomedical text

    Get PDF
    Entity recognition and disambiguation (ERD) for the biomedical domain are notoriously difficult problems due to the variety of entities and their often long names in many variations. Existing works focus heavily on the molecular level in two ways. First, they target scientific literature as the input text genre. Second, they target single, highly specialized entity types such as chemicals, genes, and proteins. However, a wealth of biomedical information is also buried in the vast universe of Web content. In order to fully utilize all the information available, there is a need to tap into Web content as an additional input. Moreover, there is a need to cater for other entity types such as symptoms and risk factors since Web content focuses on consumer health. The goal of this thesis is to investigate ERD methods that are applicable to all entity types in scientific literature as well as Web content. In addition, we focus on under-explored aspects of the biomedical ERD problems -- scalability, long noun phrases, and out-of-knowledge base (OOKB) entities. This thesis makes four main contributions, all of which leverage knowledge in UMLS (Unified Medical Language System), the largest and most authoritative knowledge base (KB) of the biomedical domain. The first contribution is a fast dictionary lookup method for entity recognition that maximizes throughput while balancing the loss of precision and recall. The second contribution is a semantic type classification method targeting common words in long noun phrases. We develop a custom set of semantic types to capture word usages; besides biomedical usage, these types also cope with non-biomedical usage and the case of generic, non-informative usage. The third contribution is a fast heuristics method for entity disambiguation in MEDLINE abstracts, again maximizing throughput but this time maintaining accuracy. The fourth contribution is a corpus-driven entity disambiguation method that addresses OOKB entities. The method first captures the entities expressed in a corpus as latent representations that comprise in-KB and OOKB entities alike before performing entity disambiguation.Die Erkennung und Disambiguierung von Entitäten für den biomedizinischen Bereich stellen, wegen der vielfältigen Arten von biomedizinischen Entitäten sowie deren oft langen und variantenreichen Namen, große Herausforderungen dar. Vorhergehende Arbeiten konzentrieren sich in zweierlei Hinsicht fast ausschließlich auf molekulare Entitäten. Erstens fokussieren sie sich auf wissenschaftliche Publikationen als Genre der Eingabetexte. Zweitens fokussieren sie sich auf einzelne, sehr spezialisierte Entitätstypen wie Chemikalien, Gene und Proteine. Allerdings bietet das Internet neben diesen Quellen eine Vielzahl an Inhalten biomedizinischen Wissens, das vernachlässigt wird. Um alle verfügbaren Informationen auszunutzen besteht der Bedarf weitere Internet-Inhalte als zusätzliche Quellen zu erschließen. Außerdem ist es auch erforderlich andere Entitätstypen wie Symptome und Risikofaktoren in Betracht zu ziehen, da diese für zahlreiche Inhalte im Internet, wie zum Beispiel Verbraucherinformationen im Gesundheitssektor, relevant sind. Das Ziel dieser Dissertation ist es, Methoden zur Erkennung und Disambiguierung von Entitäten zu erforschen, die alle Entitätstypen in Betracht ziehen und sowohl auf wissenschaftliche Publikationen als auch auf andere Internet-Inhalte anwendbar sind. Darüber hinaus setzen wir Schwerpunkte auf oft vernachlässigte Aspekte der biomedizinischen Erkennung und Disambiguierung von Entitäten, nämlich Skalierbarkeit, lange Nominalphrasen und fehlende Entitäten in einer Wissensbank. In dieser Hinsicht leistet diese Dissertation vier Hauptbeiträge, denen allen das Wissen von UMLS (Unified Medical Language System), der größten und wichtigsten Wissensbank im biomedizinischen Bereich, zu Grunde liegt. Der erste Beitrag ist eine schnelle Methode zur Erkennung von Entitäten mittels Lexikonabgleich, welche den Durchsatz maximiert und gleichzeitig den Verlust in Genauigkeit und Trefferquote (precision and recall) balanciert. Der zweite Beitrag ist eine Methode zur Klassifizierung der semantischen Typen von Nomen, die sich auf gebräuchliche Nomen von langen Nominalphrasen richtet und auf einer selbstentwickelten Sammlung von semantischen Typen beruht, die die Verwendung der Nomen erfasst. Neben biomedizinischen können diese Typen auch nicht-biomedizinische und allgemeine, informationsarme Verwendungen behandeln. Der dritte Beitrag ist eine schnelle Heuristikmethode zur Disambiguierung von Entitäten in MEDLINE Kurzfassungen, welche den Durchsatz maximiert, aber auch die Genauigkeit erhält. Der vierte Beitrag ist eine korpusgetriebene Methode zur Disambiguierung von Entitäten, die speziell fehlende Entitäten in einer Wissensbank behandelt. Die Methode wandelt erst die Entitäten, die in einem Textkorpus ausgedrückt aber nicht notwendigerweise in einer Wissensbank sind, in latente Darstellungen um und führt anschließend die Disambiguierung durch

    The gene normalization task in BioCreative III

    Get PDF
    BACKGROUND: We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). RESULTS: We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. CONCLUSIONS: By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance

    A system to extract abbreviation-expansion pairs from biomedical literature

    Get PDF
    We present a system to identify abbreviation expansion pairs from scientific articles. We work with the Genomics track of the TREC collection. Authors report abbreviations in two places - an abbreviations section and within the body of a scientific article. Articles with an abbreviations section had fewer abbreviations than those that did not have an abbreviations section (an average of 7.1 versus 13.2 abbreviations per article). For articles that do have an abbreviations section, authors report 98.2% of the abbreviations present in the document in that section. Inspired by Schwartz & Hearst's earlier work our program identified 2.1 million abbreviations from 162,259 documents. A manual inspection of a randomly selected set of articles revealed that our system achieved 86.7% precision and 81.9% recall

    BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature

    Get PDF
    BACKGROUND: To automatically process large quantities of biological literature for knowledge discovery and information curation, text mining tools are becoming essential. Abbreviation recognition is related to NER and can be considered as a pair recognition task of a terminology and its corresponding abbreviation from free text. The successful identification of abbreviation and its corresponding definition is not only a prerequisite to index terms of text databases to produce articles of related interests, but also a building block to improve existing gene mention tagging and gene normalization tools. RESULTS: Our approach to abbreviation recognition (AR) is based on machine-learning, which exploits a novel set of rich features to learn rules from training data. Tested on the AB3P corpus, our system demonstrated a F-score of 89.90% with 95.86% precision at 84.64% recall, higher than the result achieved by the existing best AR performance system. We also annotated a new corpus of 1200 PubMed abstracts which was derived from BioCreative II gene normalization corpus. On our annotated corpus, our system achieved a F-score of 86.20% with 93.52% precision at 79.95% recall, which also outperforms all tested systems. CONCLUSION: By applying our system to extract all short form-long form pairs from all available PubMed abstracts, we have constructed BIOADI. Mining BIOADI reveals many interesting trends of bio-medical research. Besides, we also provide an off-line AR software in the download section on http://bioagent.iis.sinica.edu.tw/BIOADI/

    Normalizing acronyms and abbreviations to aid patient understanding of clinical texts: ShARe/CLEF eHealth Challenge 2013, Task 2

    Get PDF
    Background: The ShARe/CLEF eHealth challenge lab aims to stimulate development of natural language processing and information retrieval technologies to aid patients in understanding their clinical reports. In clinical text, acronyms and abbreviations, also referenced as short forms, can be difficult for patients to understand. For one of three shared tasks in 2013 (Task 2), we generated a reference standard of clinical short forms normalized to the Unified Medical Language System. This reference standard can be used to improve patient understanding by linking to web sources with lay descriptions of annotated short forms or by substituting short forms with a more simplified, lay term. Methods: In this study, we evaluate 1) accuracy of participating systems’ normalizing short forms compared to a majority sense baseline approach, 2) performance of participants’ systems for short forms with variable majority sense distributions, and 3) report the accuracy of participating systems’ normalizing shared normalized concepts between the test set and the Consumer Health Vocabulary, a vocabulary of lay medical terms. Results: The best systems submitted by the five participating teams performed with accuracies ranging from 43 to 72 %. A majority sense baseline approach achieved the second best performance. The performance of participating systems for normalizing short forms with two or more senses with low ambiguity (majority sense greater than 80 %) ranged from 52 to 78 % accuracy, with two or more senses with moderate ambiguity (majority sense between 50 and 80 %) ranged from 23 to 57 % accuracy, and with two or more senses with high ambiguity (majority sense less than 50 %) ranged from 2 to 45 % accuracy. With respect to the ShARe test set, 69 % of short form annotations contained common concept unique identifiers with the Consumer Health Vocabulary. For these 2594 possible annotations, the performance of participating systems ranged from 50 to 75 % accuracy. Conclusion: Short form normalization continues to be a challenging problem. Short form normalization systems perform with moderate to reasonable accuracies. The Consumer Health Vocabulary could enrich its knowledge base with missed concept unique identifiers from the ShARe test set to further support patient understanding of unfamiliar medical terms.</p
    • …
    corecore