1,629 research outputs found

    Jamming Cognitive Radios

    Get PDF
    The goal of this thesis is to identify and evaluate weaknesses in the rendezvous process for Cognitive Radio Networks (CRNs) in the presence of a Cognitive Jammer (CJ). Jamming strategies are suggested and tested for effectiveness. Methods for safe- guarding the Cognitive Radios (CRs) against a CJ are also explored. A simulation is constructed to set up a scenario of two CRs interacting with a CJ. Analysis of the simulation is conducted primarily at the waveform level. A hardware setup is constructed to analyze the system in the physical layer, verify the interactions from the simulation, and test in a low signal-to-interference and noise ratio (SINR) environment. The hardware used in this thesis is the Wireless Open-Access Research Platform. Performance metrics from open literature and independent testing are compared against those captured from the jamming tests. The goal of testing is to evaluate and quantify the ability to delay the rendezvous process of a CRN. There was some success in delaying rendezvous, even in a high SINR environment. Jamming strategies include a jammer that repeats an observed channel-hopping pattern, a jammer with random inputs using the same algorithm of the CRs, a jammer that estimates channel-hopping parameters based on observations, and a random channel-hopping jammer. Results were compared against control scenarios, consisting of no jamming and a jammer that is always jamming on the same channel as one of the CRs. The repeater, random inputs to the CR algorithm, observation-based estimation jammer, and the random channel hopping jammer were mildly successful in delaying rendezvous at about 0%, 9%, 0%, and 1%, respectively. The jammer that is always on the same channel as a CR had an overall rendezvous delay about 13% of the time

    Adaptive and autonomous protocol for spectrum identification and coordination in ad hoc cognitive radio network

    Get PDF
    The decentralised structure of wireless Ad hoc networks makes them most appropriate for quick and easy deployment in military and emergency situations. Consequently, in this thesis, special interest is given to this form of network. Cognitive Radio (CR) is defined as a radio, capable of identifying its spectral environment and able to optimally adjust its transmission parameters to achieve interference free communication channel. In a CR system, Dynamic Spectrum Access (DSA) is made feasible. CR has been proposed as a candidate solution to the challenge of spectrum scarcity. CR works to solve this challenge by providing DSA to unlicensed (secondary) users. The introduction of this new and efficient spectrum management technique, the DSA, has however, opened up some challenges in this wireless Ad hoc Network of interest; the Cognitive Radio Ad Hoc Network (CRAHN). These challenges, which form the specific focus of this thesis are as follows: First, the poor performance of the existing spectrum sensing techniques in low Signal to Noise Ratio (SNR) conditions. Secondly the lack of a central coordination entity for spectrum allocation and information exchange in the CRAHN. Lastly, the existing Medium Access Control (MAC) Protocol such as the 802.11 was designed for both homogeneous spectrum usage and static spectrum allocation technique. Consequently, this thesis addresses these challenges by first developing an algorithm comprising of the Wavelet-based Scale Space Filtering (WSSF) algorithm and the Otsu's multi-threshold algorithm to form an Adaptive and Autonomous WaveletBased Scale Space Filter (AWSSF) for Primary User (PU) sensing in CR. These combined algorithms produced an enhanced algorithm that improves detection in low SNR conditions when compared to the performance of EDs and other spectrum sensing techniques in the literature. Therefore, the AWSSF met the performance requirement of the IEEE 802.22 standard as compared to other approaches and thus considered viable for application in CR. Next, a new approach for the selection of control channel in CRAHN environment using the Ant Colony System (ACS) was proposed. The algorithm reduces the complex objective of selecting control channel from an overtly large spectrum space,to a path finding problem in a graph. We use pheromone trails, proportional to channel reward, which are computed based on received signal strength and channel availability, to guide the construction of selection scheme. Simulation results revealed ACS as a feasible solution for optimal dynamic control channel selection. Finally, a new channel hopping algorithm for the selection of a control channel in CRAHN was presented. This adopted the use of the bio-mimicry concept to develop a swarm intelligence based mechanism. This mechanism guides nodes to select a common control channel within a bounded time for the purpose of establishing communication. Closed form expressions for the upper bound of the time to rendezvous (TTR) and Expected TTR (ETTR) on a common control channel were derived for various network scenarios. The algorithm further provides improved performance in comparison to the Jump-Stay and Enhanced Jump-Stay Rendezvous Algorithms. We also provided simulation results to validate our claim of improved TTR. Based on the results obtained, it was concluded that the proposed system contributes positively to the ongoing research in CRAHN

    Guaranteed Rendezvous for Cognitive Radio Networks Based on Cycle Length

    Get PDF
    Rendezvous is a fundamental process establishing a communication link on common channel between a pair of nodes in the cognitive radio networks. How to reach rendezvous efficiently and effectively is still an open problem. In this work, we propose a guaranteed cycle lengths based rendezvous (CLR) algorithm for cognitive radio networks. When the cycle lengths of the two nodes are coprime, the rendezvous is guaranteed within one rendezvous period considering the time skew between the two nodes. When Ti and Tj are not coprime, i.e., Ti=Tj, the deadlock checking and node IDs are combined to decide the time point and the way to independently change the cycle length on each node to guarantee rendezvous. In detail, as long as the deadlock situation is detected based on the threshold, each node can independently change its cycle length be based on the current checking bit of the node ID. The threshold used for deadlock checking is defined as the length of the maximum possible rendezvous period between the two nodes. As long as the current checking bits between the two nodes are different, the rendezvous will be reached in the following rendezvous period, The theoretical analysis also proves the guarantee of the CLR algorithm under both the two cases. We use three metrics: success rate of rendezvous, expected time to rendezvous and channel load to conduct simulation studies. The simulation results show that the CLR algorithm always has higher successful rendezvous rate of 100%, and stable and low expected time to rendezvous compared to the HH algorithm. In addition, the channel loads are smoothly distributed on all channels with CLR, while HH algorithm depends on the channels with smaller IDs

    Revisiting the Performance of the Modular Clock Algorithm for Distributed Blind Rendezvous in Cognitive Radio Networks

    Get PDF
    Abstract. We reexamine the modular clock algorithm for distributed blind rendezvous in cognitive radio networks. It proceeds in rounds. Each round consists of scanning twice a block of generated channels. The modular clock algorithm inspired the creation of the jump-stay ren-dezvous algorithm. It augments the modular clock with a stay-on-one-channel pattern. This enhancement guarantees rendezvous in one round. We make the observation that as the number of channels increases, the significance of the stay-on-one-channel pattern decreases. We revisit the performance analysis of the two-user symmetric case of the modular clock algorithm. We compare its performance with a random and the jump-stay rendezvous algorithms. Let m be the number of channels. Let p be the smallest prime number greater than m. The expected time-to-rendezvous of the random and jump-stay algorithms are m and p, respectively. Theis et al.’s analysis of the modular clock algorithm con-cludes a maximum expected time-to-rendezvous slightly larger than 2p time slots. Our analysis shows that the expected time-to-rendezvous of the modular clock algorithm is no more than 3p/4 time slots.

    ZOS: A Fast Rendezvous Algorithm Based on Set of Available Channels for Cognitive Radios

    Full text link
    Most of existing rendezvous algorithms generate channel-hopping sequences based on the whole channel set. They are inefficient when the set of available channels is a small subset of the whole channel set. We propose a new algorithm called ZOS which uses three types of elementary sequences (namely, Zero-type, One-type, and S-type) to generate channel-hopping sequences based on the set of available channels. ZOS provides guaranteed rendezvous without any additional requirements. The maximum time-to-rendezvous of ZOS is upper-bounded by O(m1*m2*log2M) where M is the number of all channels and m1 and m2 are the numbers of available channels of two users.Comment: 10 page

    A new analytic model for the cognitive radio jump-stay algorithm

    Full text link
    In cognitive radio networks, primary users have priority over the regulated radio spectrum. Secondary users may use residual air time. We focus on the problem of meeting on a common channel by a group of secondary users. The goal is to make the users rendezvous on a common channel in a minimum amount of time. The jump-stay algorithm has been created by Lin et al. to solve this problem. We construct a new analytic model for the two-user expected time to rendezvous in the jump-stay algorithm that better reflects its performance. For the sake of comparison, we also evaluate the performance of the jump-stay algorithm through simulation
    • …
    corecore