71,118 research outputs found

    The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem

    Get PDF
    The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code

    Penalized Orthogonal Iteration for Sparse Estimation of Generalized Eigenvalue Problem

    Full text link
    We propose a new algorithm for sparse estimation of eigenvectors in generalized eigenvalue problems (GEP). The GEP arises in a number of modern data-analytic situations and statistical methods, including principal component analysis (PCA), multiclass linear discriminant analysis (LDA), canonical correlation analysis (CCA), sufficient dimension reduction (SDR) and invariant co-ordinate selection. We propose to modify the standard generalized orthogonal iteration with a sparsity-inducing penalty for the eigenvectors. To achieve this goal, we generalize the equation-solving step of orthogonal iteration to a penalized convex optimization problem. The resulting algorithm, called penalized orthogonal iteration, provides accurate estimation of the true eigenspace, when it is sparse. Also proposed is a computationally more efficient alternative, which works well for PCA and LDA problems. Numerical studies reveal that the proposed algorithms are competitive, and that our tuning procedure works well. We demonstrate applications of the proposed algorithm to obtain sparse estimates for PCA, multiclass LDA, CCA and SDR. Supplementary materials are available online

    On pole-swapping algorithms for the eigenvalue problem

    Full text link
    Pole-swapping algorithms, which are generalizations of the QZ algorithm for the generalized eigenvalue problem, are studied. A new modular (and therefore more flexible) convergence theory that applies to all pole-swapping algorithms is developed. A key component of all such algorithms is a procedure that swaps two adjacent eigenvalues in a triangular pencil. An improved swapping routine is developed, and its superiority over existing methods is demonstrated by a backward error analysis and numerical tests. The modularity of the new convergence theory and the generality of the pole-swapping approach shed new light on bi-directional chasing algorithms, optimally packed shifts, and bulge pencils, and allow the design of novel algorithms

    Residual Component Analysis

    Get PDF
    Probabilistic principal component analysis (PPCA) seeks a low dimensional representation of a data set in the presence of independent spherical Gaussian noise, Sigma = (sigma^2)*I. The maximum likelihood solution for the model is an eigenvalue problem on the sample covariance matrix. In this paper we consider the situation where the data variance is already partially explained by other factors, e.g. covariates of interest, or temporal correlations leaving some residual variance. We decompose the residual variance into its components through a generalized eigenvalue problem, which we call residual component analysis (RCA). We show that canonical covariates analysis (CCA) is a special case of our algorithm and explore a range of new algorithms that arise from the framework. We illustrate the ideas on a gene expression time series data set and the recovery of human pose from silhouette

    Generalized Pseudospectral Shattering and Inverse-Free Matrix Pencil Diagonalization

    Full text link
    We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any n×nn \times n matrix pencil (A,B)(A,B). The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel, and Dumitriu [Technical Report 2010]. We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability as long as the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni, and Srivastava [Foundations of Computational Mathematics 2022]. In particular, we show that perturbing and scaling (A,B)(A,B) regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of (A,B)(A,B) in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible S,TS,T and diagonal DD such that ASDT12ε||A - SDT^{-1}||_2 \leq \varepsilon and BSIT12ε||B - SIT^{-1}||_2 \leq \varepsilon in at most O(log(n)log2(nε)TMM(n))O \left( \log(n) \log^2 \left( \frac{n}{\varepsilon} \right) T_{\text{MM}}(n) \right) operations, where TMM(n)T_{\text{MM}}(n) is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of exact arithmetic matrix pencil diagonalization.Comment: 58 pages, 8 figures, 2 table

    From FNS to HEIV: A link between two vision parameter estimation methods

    Get PDF
    Copyright © 2004 IEEEProblems requiring accurate determination of parameters from imagebased quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here, it is shown that FNS and a core version of HEIV are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalized eigenvalue problem and effectively leads to a new derivation of the relevant case of the HEIV algorithm. This work may be seen as an extension of previous efforts to rationalize and interrelate a spectrum of estimators, including the renormalization method of Kanatani and the normalized eight-point method of Hartley.Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel, and Darren Gawle
    corecore