76,441 research outputs found

    QPDAS: Dual Active Set Solver for Mixed Constraint Quadratic Programming

    Full text link
    We present a method for solving the general mixed constrained convex quadratic programming problem using an active set method on the dual problem. The approach is similar to existing active set methods, but we present a new way of solving the linear systems arising in the algorithm. There are two main contributions; we present a new way of factorizing the linear systems, and show how iterative refinement can be used to achieve good accuracy and to solve both types of sub-problems that arise from semi-definite problems

    Box-Inequalities for Quadratic Assignment Polytopes

    Get PDF
    Linear Programming based lower bounds have been considered both for the general as well as for the symmetric quadratic assignment problem several times in the recent years. They have turned out to be quite good in practice. Investigations of the polytopes underlying the corresponding integer linear programming formulations (the non-symmetric and the symmetric quadratic assignment polytope) have been started by Rijal (1995), Padberg and Rijal (1996), and Jünger and Kaibel (1996, 1997). They have lead to basic knowledge on these polytopes concerning questions like their dimensions, affine hulls, and trivial facets. However, no large class of (facet-defining) inequalities that could be used in cutting plane procedures had been found. We present in this paper the first such class of inequalities, the box inequalities, which have an interesting origin in some well-known hypermetric inequalities for the cut polytope. Computational experiments with a cutting plane algorithm based on these inequalities show that they are very useful with respect to the goal of solving quadratic assignment problems to optimality or to compute tight lower bounds. The most effective ones among the new inequalities turn out to be indeed facet-defining for both the non-symmetric as well as for the symmetric quadratic assignment polytope

    DYNAMIC PROBLEM OF FORMATION OF SECURITIES PORTFOLIO UNDER UNCERTAINTY CONDITIONS

    Get PDF
    The analysis of known methods for solving the problem of forming a portfolio of securities in the face of uncertainty is carried out. Traditionally, the problem is solved under the assumption that for each type of asset, the values of the main statistical characteristics of the random value of their profitability (mathematical expectation and variance) are known. At the same time, the variance of portfolio returns, which is minimized, is used as a criterion for portfolio optimization. Two alternative approaches to solving the formulated problem are proposed. The first of them provides a decision on the criterion of the probability that the random total portfolio return will not be lower than the given. It is assumed that the random return for each type of asset is distributed normally and the statistical characteristics of the respective densities are known. The original problem is reduced to the problem of maximizing the quadratic fractional criterion in the presence of linear constraints. To solve this non-standard optimization problem, a special iterative algorithm is proposed that implements the procedure for sequential improvement of the plan. The method converges and the computational procedure for obtaining a solution can be stopped by any of the standard criteria. The second approach considers the possibility of solving the problem under the assumption that the distribution densities of random asset returns are not known, however, based on the results of preliminary statistical processing of the initial data, estimates of the values of the main numerical characteristics for each of the assets are obtained. To solve the problem, a new mathematical apparatus is used – continuous linear programming, which is a generalization of ordinary linear programming to the case when the task variables are continuous. This method, in the considered problem, is based on solving an auxiliary problem: finding the worst-case distribution density of a random total portfolio return at which this total return does not reach an acceptable threshold with maximum probability. Now the main minimax problem is being solved: the formation of the best portfolio in the worst conditions. The resulting computational scheme leads to the problem of quadratic mathematical programming in the presence of linear constraints. Next, a method is proposed for solving the problem of forming a portfolio of securities, taking into account the real dynamics of the value of assets. The problem that arises in this case is formulated and solved in terms of the general theory of control, using the Riccati equation

    Using a conic bundle method to accelerate both phases of a quadratic convex reformulation

    Full text link
    We present algorithm MIQCR-CB that is an advancement of method MIQCR~(Billionnet, Elloumi and Lambert, 2012). MIQCR is a method for solving mixed-integer quadratic programs and works in two phases: the first phase determines an equivalent quadratic formulation with a convex objective function by solving a semidefinite problem (SDP)(SDP), and, in the second phase, the equivalent formulation is solved by a standard solver. As the reformulation relies on the solution of a large-scale semidefinite program, it is not tractable by existing semidefinite solvers, already for medium sized problems. To surmount this difficulty, we present in MIQCR-CB a subgradient algorithm within a Lagrangian duality framework for solving (SDP)(SDP) that substantially speeds up the first phase. Moreover, this algorithm leads to a reformulated problem of smaller size than the one obtained by the original MIQCR method which results in a shorter time for solving the second phase. We present extensive computational results to show the efficiency of our algorithm
    corecore