75,511 research outputs found

    Error tolerance in an NMR Implementation of Grover's Fixed-Point Quantum Search Algorithm

    Full text link
    We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance (NMR) quantum computer, searching for either one or two matching items in an unsorted database of four items. In this new algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, and so the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored.Comment: 5 Pages RevTex4 including three figures. Changes made at request of referees; now in press at Phys Rev

    A different kind of quantum search

    Full text link
    The quantum search algorithm consists of an alternating sequence of selective inversions and diffusion type operations, as a result of which it can find a target state in an unsorted database of size N in only sqrt(N) queries. This paper shows that by replacing the selective inversions by selective phase shifts of Pi/3, the algorithm gets transformed into something similar to a classical search algorithm. Just like classical search algorithms this algorithm has a fixed point in state-space toward which it preferentially converges. In contrast, the original quantum search algorithm moves uniformly in a two-dimensional state space. This feature leads to robust search algorithms and also to conceptually new schemes for error correction.Comment: 13 pages, 4 figure

    Fixed-point quantum search with an optimal number of queries

    Get PDF
    Grover's quantum search and its generalization, quantum amplitude amplification, provide quadratic advantage over classical algorithms for a diverse set of tasks, but are tricky to use without knowing beforehand what fraction λ\lambda of the initial state is comprised of the target states. In contrast, fixed-point search algorithms need only a reliable lower bound on this fraction, but, as a consequence, lose the very quadratic advantage that makes Grover's algorithm so appealing. Here we provide the first version of amplitude amplification that achieves fixed-point behavior without sacrificing the quantum speedup. Our result incorporates an adjustable bound on the failure probability, and, for a given number of oracle queries, guarantees that this bound is satisfied over the broadest possible range of λ\lambda.Comment: 4 pages plus references, 2 figure

    A quantum genetic algorithm with quantum crossover and mutation operations

    Full text link
    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm which has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.Comment: 21 pages, 1 table, v2: typos corrected, minor modifications in sections 3.5 and 4, v3: minor revision, title changed (original title: Semiclassical genetic algorithm with quantum crossover and mutation operations), v4: minor revision, v5: minor grammatical corrections, to appear in QI

    Performance of Equal Phase-Shift Search for One Iteration

    Full text link
    Grover presented the phase-shift search by replacing the selective inversions by selective phase shifts of π/3\pi /3. In this paper, we investigate the phase-shift search with general equal phase shifts. We show that for small uncertainties, the failure probability of the Phase-π/3\pi /3 search is smaller than the general phase-shift search and for large uncertainties, the success probability of the large phase-shift search is larger than the Phase-π/3\pi /3 search. Therefore, the large phase-shift search is suitable for large-size of databases.Comment: 10 pages, 4 figure
    corecore