9 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Optimal design and freeform extrusion fabrication of functionally gradient smart parts

    Get PDF
    An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density was developed. In this process, an aqueous paste of ceramic particles with a very low binder content (\u3c1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Sample parts made of alumina and fully stabilized zirconia were produced using this process and their mechanical properties including density, strength, Young\u27s modulus, Weibull modulus, toughness, and hardness were examined. Microstructural evaluation was also performed to measure the grain size, and critical flaw sizes were obtained. The results indicate that the proposed method enables fabrication of geometrically complex parts with superior mechanical properties. Furthermore, several methods were developed to increase the productivity of the CODE process and enable manufacturing of functionally graded materials with an optimum distribution of material composition. As an application of the CODE process, advanced ceramic components with embedded sapphire optical fiber sensors were fabricated and properties of parts and sensors were evaluated using standard test methods --Abstract, page iv

    Optimal discrete slicing

    Get PDF
    International audienceSlicing is the procedure necessary to prepare a shape for layered manufacturing. There are degrees of freedom in this process, such as the starting point of the slicing sequence and the thickness of each slice. The choice of these parameters influences the manufacturing process and its result: The number of slices significantly affects the time needed for manufacturing, while their thickness affects the error. Assuming a discrete setting, we measure the error as the number of voxels that are incorrectly assigned due to slicing. We provide an algorithm that generates, for a given set of available slice heights and a shape, a slicing that is provably optimal. By optimal, we mean that the algorithm generates sequences with minimal error for any possible number of slices. The algorithm is fast and flexible, that is, it can accommodate a user driven importance modulation of the error function and allows the interactive exploration of the desired quality/time tradeoff. We demonstrate the practical importance of our optimization on several three-dimensional-printed results

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Anti-aliasing for fused filament deposition

    Get PDF
    14 pages, 22 figuresInternational audienceLayered manufacturing inherently suffers from staircase defects along surfaces that are gently slopped with respect to the build direction. Reducing the slice thickness improves the situation but never resolves it completely as flat layers remain a poor approximation of the true surface in these regions. In addition, reducing the slice thickness largely increases the print time. In this work we focus on a simple yet effective technique to improve the print accuracy for layered manufacturing by filament deposition. Our method works with standard three-axis 3D filament printers (e.g. the typical, widely available 3D printers), using standard extrusion nozzles. It better reproduces the geometry of sloped surfaces without increasing the print time. Our key idea is to perform a local anti-aliasing, working at a sub-layer accuracy to produce slightly curved depo-sition paths and reduce approximation errors. This is inspired by Computer Graphics anti-aliasing techniques which consider sub-pixel precision to treat aliasing effects. We show that the necessary deviation in height compared to standard slicing is bounded by half the layer thickness. Therefore, the height changes remain small and plastic deposition remains reliable. We further split and order paths to minimize defects due to the extruder nozzle shape, avoiding any change to the existing hardware. We apply and analyze our approach on 3D printed examples, showing that our technique greatly improves surface accuracy and silhouette quality while keeping the print time nearly identical

    Adaptive slicing based on efficient profile analysis

    Get PDF
    Adaptive slicing is an important computational task required in the layer-based manufacturing process. Its purpose is to find an optimal trade-off between the fabrication time (number of layers) and the surface quality (geometric deviation error). Most of the traditional adaptive slicing algorithms are computationally expensive or only based on local evaluation of errors. To tackle these problems, we introduce a method to efficiently generate slicing plans by a new metric profile that can characterize the distribution of deviation errors along the building direction. By generalizing the conventional error metrics, the proposed metric profile is a density function of deviation errors, which measures the global deviation errors rather than the in-plane local geometry errors used in most prior methods. Slicing can be efficiently evaluated based on metric profiles in contrast to the expensive computation on models in boundary-representation. An efficient algorithm based on dynamic programming is proposed to find the best slicing plan. Our adaptive slicing method can also be applied to models with weighted features and can serve as the inner loop to search the best building direction. The performance of our approach is demonstrated by experimental tests on different examples

    CurviSlicer: Slightly curved slicing for 3-axis printers

    Get PDF
    International audienceMost additive manufacturing processes fabricate objects by stacking planar layers of solidified material. As a result, produced parts exhibit a so-called staircase effect, which results from sampling slanted surfaces with parallel planes. Using thinner slices reduces this effect, but it always remains visible where layers almost align with the input surfaces. In this research we exploit the ability of some additive manufacturing processes to deposit material slightly out of plane to dramatically reduce these artifacts. We focus in particular on the widespread Fused Filament Fabrication (FFF) technology, since most printers in this category can deposit along slightly curved paths, under deposition slope and thickness constraints. Our algorithm curves the layers, making them either follow the natural slope of the input surface or on the contrary, make them intersect the surfaces at a steeper angle thereby improving the sampling quality. Rather than directly computing curved layers, our algorithm optimizes for a deformation of the model which is then sliced with a standard planar approach. We demonstrate that this approach enables us to encode all fabrication constraints , including the guarantee of generating collision-free toolpaths, in a convex optimization that can be solved using a QP solver. We produce a variety of models and compare print quality between curved deposition and planar slicing

    Additive Manufacturing: Product Development Process Optimization Through CAD-CAM Integration

    Get PDF
    Die Verbreitung von 3D-Druck-Anwendungen im Bereich der Home- und Office-User führt zu einer gesellschaftlichen und medialen Fokussierung aller Technologien zur additiven Bauteilherstellung. Auch für die professionelle Anwendung dieser Technologien als Fertigungsverfahren werden die Möglichkeiten als grenzenlos beschrieben. Bei weitergehender Auseinandersetzung wird jedoch schnell festgestellt, dass sich additive Fertigungsverfahren zwar prinzipiell zur Herstellung von Produk-ten eignen, eine umfassende Einbindung in bekannte Betriebs- und Entwicklungsab-läufe jedoch noch nicht gegeben ist. Ziel der Arbeit ist es, eine umfassende CAD-CAM-Prozesskette für additive Fertigungsverfahren zu entwickeln. So sollen durch bessere Integration die Akzeptanz, Effizienz und Qualität des Produktentwicklungsprozesses gesteigert werden. Dazu wird ein Ansatz zur Erweiterung gängiger 3D-CAD-Systeme entwickelt. Hiermit sollen die für die additive Fertigung typischen Eigenschaften direkt bei der Bauteilgestaltung verfügbar gemacht werden. Die Integration resultiert letztendlich in der Bereitstellung von Schichtdaten im eigens entwickelten Schichtdatenformat Additive Manufacturing Layer File Format (AMLF). Die Umsetzung erfolgt durch umfassende Nutzung von Systems Engineering Methoden. Als Demonstrator für die Erfassung von Anforderungen und die Beschreibung von Teillösungen wird die gekühlte Leitschaufel einer Gasturbine gewählt.The growing use of 3D printing applications in the home and office environment increases media coverage of the related additive manufacturing technologies. In this regard, the possibilities for the professional utilization of these technologies are de-scribed as limitless. However, a closer look quickly reveals that additive manufacturing technologies are in principle suitable for manufacturing whereas a full integration in the known development processes is not given yet. Therefore, the aim of this work is the description of a comprehensive CAD-CAM-process chain for additive manufacturing. As a result a better acceptance, efficiency and quality of the product devel-opment process should be achieved. For this purpose, an approach for the enhancement of standard 3D-CAD-systems is developed. This approach provides additive manufacturing specific properties and features during the part design process, which eventually results in layer data that is exchanged with the self-developed Additive Manufacturing Layer File Format (AMLF). The implementation is carried out by the use of systems engineering methods. For an extended requirements review and the description of partial solutions, a cooled stationary blade of a gas turbine is chosen as demonstrator
    corecore