315 research outputs found

    Development of a Data Driven Multiple Observer and Causal Graph Approach for Fault Diagnosis of Nuclear Power Plant Sensors and Field Devices

    Get PDF
    Data driven multiple observer and causal graph approach to fault detection and isolation is developed for nuclear power plant sensors and actuators. It can be integrated into the advanced instrumentation and control system for the next generation nuclear power plants. The developed approach is based on analytical redundancy principle of fault diagnosis. Some analytical models are built to generate the residuals between measured values and expected values. Any significant residuals are used for fault detection and the residual patterns are analyzed for fault isolation. Advanced data driven modeling methods such as Principal Component Analysis and Adaptive Network Fuzzy Inference System are used to achieve on-line accurate and consistent models. As compared with most current data-driven modeling, it is emphasized that the best choice of model structure should be obtained from physical study on a system. Multiple observer approach realizes strong fault isolation through designing appropriate residual structures. Even if one of the residuals is corrupted, the approach is able to indicate an unknown fault instead of a misleading fault. Multiple observers are designed through making full use of the redundant relationships implied in a process when predicting one variable. Data-driven causal graph is developed as a generic approach to fault diagnosis for nuclear power plants where limited fault information is available. It has the potential of combining the reasoning capability of qualitative diagnostic method and the strength of quantitative diagnostic method in fault resolution. A data-driven causal graph consists of individual nodes representing plant variables connected with adaptive quantitative models. With the causal graph, fault detection is fulfilled by monitoring the residual of each model. Fault isolation is achieved by testing the possible assumptions involved in each model. Conservatism is implied in the approach since a faulty sensor or a fault actuator signal is isolated only when their reconstructions can fully explain all the abnormal behavior of the system. The developed approaches have been applied to nuclear steam generator system of a pressurized water reactor and a simulation code has been developed to show its performance. The results show that both single and dual sensor faults and actuator faults can be detected and isolated correctly independent of fault magnitudes and initial power level during early fault transient

    Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach

    Get PDF
    In this paper, the problem of robust fault diagnosis of proton exchange membrane (PEM) fuel cells is addressed by introducing the Takagi-Sugeno (TS) interval observers that consider uncertainty in a bounded context, adapting TS observers to the so-called interval approach. Design conditions for the TS interval observer based on regional pole placement are also introduced to guarantee the fault detection and isolation (FDI) performance. The fault detection test is based on checking the consistency between the measurements and the output estimations provided by the TS observers. In presence of bounded uncertainty, this check relies on determining if all the measurements lie inside their corresponding estimated interval bounds. When a fault is detected, the measurements that are inconsistent with their corresponding estimations are annotated and a fault isolation procedure is triggered. By using the theoretical fault signature matrix (FSM), which summarizes the effects of the different faults on the available residuals, the fault is isolated by means of a logic reasoning that takes into account the bounded uncertainty, and if the number of candidate faults is more than one, a correlation analysis is used to obtain the most likely fault candidate. Finally, the proposed approach is tested using a PEM fuel cell case study proposed in the literature.Peer ReviewedPostprint (author's final draft

    Active Fault Tolerant Control of Livestock Stable Ventilation System

    Get PDF

    Integration Techniques of Fault Detection and Isolation Using Interval Observers

    Get PDF
    An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex dynamical industrial systems. Concerning fault detection, interval observation is an appropriate passive robust strategy to generate an adaptive threshold to be used in residual evaluation when model uncertainty is located in parameters (interval model). In such approach, the observer gain is a key parameter since it determines the time evolution of the residual sensitivity to a fault and the minimum detectable fault. This thesis illustrates that the whole fault detection process is ruled by the dynamics of the fault residual sensitivity functions and by the time evolution of the adaptive threshold related to the interval observer. Besides, it must be taken into account that these two observer fault detection properties depend on the used observer gain. As a consequence, the observer gain becomes a tuning parameter which allows enhancing the observer fault detection performance while avoiding some drawbacks related to the analytical models, as the wrapping effect. In this thesis, the effect of the observer gain on fault detection and how this parameter can avoid some observer drawbacks (i.e. wrapping effect) are deeply analyzed. One of the results of this analysis is the determination of the minimum detectable fault function related to a given fault type. This function allows introducing a fault classification according to the fault detectability time evolution: permanently (strongly) detected, non-permanently (weakly) detected or just non-detected. In this fault detection part of this thesis, two examples have been used to illustrate the derived results: a mineral grinding-classification process and an industrial servo actuator. Concerning the interface between fault detection and fault isolation, this thesis shows that both modules can not be considered separately since the fault detection process has an important influence on the fault isolation result. This influence is not only due to the time evolution of the fault signals generated by the fault detection module but also to the fact that the fault residual sensitivity functions determines the faults which are affecting a given fault signal and the dynamics of this fault signal for each fault. This thesis illustrates this point suggesting that the interface between fault detection and fault isolation must consider a set of fault signals properties: binary property, sign property, fault residual sensitivity property, occurrence order property and occurrence time instant property. Moreover, as a result of the influence of the observer gain on the fault detection stage and on the fault residual sensitivity functions, this thesis demonstrates that the observer gain has also a key role in the fault isolation module which might allow enhancing its performance when this parameter is tuned properly (i.e. fault distinguishability may be increased). As a last point, this thesis analyzes the timed discrete-event nature of the fault signals generated by the fault detection module. As a consequence, it suggests using timed discrete-event models to model the fault isolation module. This thesis illustrates that this kind of models allow enhancing the fault isolation result. Moreover, as the monitored system is modelled using an interval observer, this thesis shows as this qualitative fault isolation model can be built up on the grounds of this system analytical model. Finally, the proposed fault isolation method is applied to detect and isolate faults of the Barcelona’s urban sewer system limnimeters. Keywords: Fault Detection, Fault Diagnosis, Robustness, Observers, Intervals, Discrete-event Systems.En la presente tesis se demuestra que el uso de observadores intervalares para detectar y aislar fallos en sistemas dinámicos complejos constituye una estrategia apropiada. En la etapa de detección del fallo, dicha estrategia permite determinar el umbral adaptativo usado en la evaluación del residuo (robustez pasiva). Dicha metodología, responde a la consideración de modelos con parámetros inciertos (modelos intervalares). En dicho enfoque, la ganancia del observador es un parámetro clave que permite determinar la evolución temporal de la sensibilidad del residuo a un fallo y el mínimo fallo detectable para un tipo de fallo determinado. Esta tesis establece que todo el proceso de detección de fallos viene determinado por la dinámica de las funciones sensibilidad del residuo a los diferentes fallos considerados y por la evolución temporal del umbral adaptativo asociado al observador intervalar. Además, se debe tener en cuenta que estas dos propiedades del observador respecto la detección de fallos dependen de la ganancia del observador. En consecuencia, la ganancia del observador se convierte en el parámetro de diseño que permite mejorar las prestaciones de dicho modelo respecto la detección de fallos mientras que permite evitar algunos defectos asociados al uso de modelos intervalares, como el efecto wrapping. Uno de los resultados obtenidos es la determinación de la función fallo mínimo detectable para un tipo de fallo dado. Esta función permite introducir una clasificación de los fallos en función de la evolución temporal de su detectabilidad: fallos permanentemente detectados, fallos no permanentemente detectados y fallos no detectados. En la primera parte de la tesis centrada en la detección de fallos se utilizan dos ejemplos para ilustrar los resultados obtenidos: un proceso de trituración y separación de minerales y un servoactuador industrial. Respecto a la interfaz entre la etapa de detección de fallos y el proceso de aislamiento, esta tesis muestra que ambos módulos no pueden considerarse separadamente dado que el proceso de detección tiene una importante influencia en el resultado de la etapa de aislamiento. Esta influencia no es debida sólo a la evolución temporal de las señales de fallo generados por el módulo de detección sino también porque las funciones sensibilidad del residuo a los diferentes posibles fallos determinan los fallos que afectan a un determinado señal de fallo y la dinámica de éste para cada uno de los fallos. Esta tesis ilustra este punto sugiriendo que el interfaz entre detección y aislamiento del fallo debe considerar un conjunto de propiedades de dichos señales: propiedad binaria, propiedad del signo, propiedad de la sensibilidad del residuo a un fallo dado, propiedad del orden de aparición de las señales causados por los fallos y la propiedad del tiempo de aparición de estos. Además, como resultado de la influencia de la ganancia del observador en la etapa de detección y en las funciones sensibilidad asociadas a los residuos, esta tesis ilustra que la ganancia del observador tiene también un papel crucial en el módulo de aislamiento, el cual podría permitir mejorar el comportamiento de dicho módulo diseñando éste parámetro del observador de forma adecuada (Ej. Incrementar la distinción de los fallos para su mejor aislamiento). Como último punto, esta tesis analiza la naturaleza temporal de eventos discretos asociada a las señales de fallo generados por el módulo de detección. A consecuencia, se sugiere usar modelos de eventos discretos temporales para modelizar el módulo de aislamiento del fallo. Esta tesis muestra que este tipo de modelos permite mejorar el resultado de aislamiento del fallo. Además, dado que el sistema monitorizado es modelado usando un observador intervalar, esta tesis muestra como este modelo cualitativo de aislamiento puede ser construido usando dicho modelo analítico del sistema. Finalmente, el método propuesto de aislamiento del fallo es aplicado para detectar y aislar fallos en los limnimetros del sistema de alcantarillado de Barcelona. Palabras clave: Detección de Fallos, Diagnosis de Fallos, Robusteza, Observadores, Intervalos, Sistemas de Eventos Discretos

    Fault detection filter and fault accommodation controller design for uncertain systems

    Get PDF
    Model-based Fault Detection (FD) and Fault Accommodation (FA) approaches have been applied in a variety of cases. We propose several techniques to include uncertainties in the design process. First, we focus on the design of the Fault Detection Filter (FDF) and Fault Accommodation Controller (FAC) for Markovian Jump Linear Systems (MJLS). The MJLS framework allows us to include the network behavior (packet loss) during the design of the FDF and FAC.Second, we propose an FDF and FAC design for the MJLS, under the assumption that the Markov chain mode is not directly accessible. Since we are using the MJLS framework to model the network behavior, the assumption that the network state is not instantly accessible is useful because from a practical standpoint this is a truthful assumption. Third, from the results presented for the MJLS framework, we provided follow-up results using Lur'e Markov Jump System. This is compelling since on some occasions the non-linear behavior cannot be ignored. Therefore, applying the Lur'e MJS framework allows us to consider the same assumptions from MJLS, but now adds the non-linearities. Fourth, we propose the design Gain-Scheduled FDF and FAC for Linear Parameter Varying (LPV) systems, under the assumption that the schedule parameter is not directly acquired. We assume that the schedule parameter is subject to additive noise. This imprecision is included during the design, using change of variables and multi-simplex techniques. Finally, throughout the thesis, we provide some numerical examples to illustrate the viability of the proposed approaches

    Methods and Systems for Fault Diagnosis in Nuclear Power Plants

    Get PDF
    This research mainly deals with fault diagnosis in nuclear power plants (NPP), based on a framework that integrates contributions from fault scope identification, optimal sensor placement, sensor validation, equipment condition monitoring, and diagnostic reasoning based on pattern analysis. The research has a particular focus on applications where data collected from the existing SCADA (supervisory, control, and data acquisition) system is not sufficient for the fault diagnosis system. Specifically, the following methods and systems are developed. A sensor placement model is developed to guide optimal placement of sensors in NPPs. The model includes 1) a method to extract a quantitative fault-sensor incidence matrix for a system; 2) a fault diagnosability criterion based on the degree of singularities of the incidence matrix; and 3) procedures to place additional sensors to meet the diagnosability criterion. Usefulness of the proposed method is demonstrated on a nuclear power plant process control test facility (NPCTF). Experimental results show that three pairs of undiagnosable faults can be effectively distinguished with three additional sensors selected by the proposed model. A wireless sensor network (WSN) is designed and a prototype is implemented on the NPCTF. WSN is an effective tool to collect data for fault diagnosis, especially for systems where additional measurements are needed. The WSN has distributed data processing and information fusion for fault diagnosis. Experimental results on the NPCTF show that the WSN system can be used to diagnose all six fault scenarios considered for the system. A fault diagnosis method based on semi-supervised pattern classification is developed which requires significantly fewer training data than is typically required in existing fault diagnosis models. It is a promising tool for applications in NPPs, where it is usually difficult to obtain training data under fault conditions for a conventional fault diagnosis model. The proposed method has successfully diagnosed nine types of faults physically simulated on the NPCTF. For equipment condition monitoring, a modified S-transform (MST) algorithm is developed by using shaping functions, particularly sigmoid functions, to modify the window width of the existing standard S-transform. The MST can achieve superior time-frequency resolution for applications that involves non-stationary multi-modal signals, where classical methods may fail. Effectiveness of the proposed algorithm is demonstrated using a vibration test system as well as applications to detect a collapsed pipe support in the NPCTF. The experimental results show that by observing changes in time-frequency characteristics of vibration signals, one can effectively detect faults occurred in components of an industrial system. To ensure that a fault diagnosis system does not suffer from erroneous data, a fault detection and isolation (FDI) method based on kernel principal component analysis (KPCA) is extended for sensor validations, where sensor faults are detected and isolated from the reconstruction errors of a KPCA model. The method is validated using measurement data from a physical NPP. The NPCTF is designed and constructed in this research for experimental validations of fault diagnosis methods and systems. Faults can be physically simulated on the NPCTF. In addition, the NPCTF is designed to support systems based on different instrumentation and control technologies such as WSN and distributed control systems. The NPCTF has been successfully utilized to validate the algorithms and WSN system developed in this research. In a real world application, it is seldom the case that one single fault diagnostic scheme can meet all the requirements of a fault diagnostic system in a nuclear power. In fact, the values and performance of the diagnosis system can potentially be enhanced if some of the methods developed in this thesis can be integrated into a suite of diagnostic tools. In such an integrated system, WSN nodes can be used to collect additional data deemed necessary by sensor placement models. These data can be integrated with those from existing SCADA systems for more comprehensive fault diagnosis. An online performance monitoring system monitors the conditions of the equipment and provides key information for the tasks of condition-based maintenance. When a fault is detected, the measured data are subsequently acquired and analyzed by pattern classification models to identify the nature of the fault. By analyzing the symptoms of the fault, root causes of the fault can eventually be identified

    Distributed Control of Networked Nonlinear Euler-Lagrange Systems

    Get PDF
    Motivated by recent developments in formation and cooperative control of networked multi-agent systems, the main goal of this thesis is development of efficient synchronization and formation control algorithms for distributed control of networked nonlinear systems whose dynamics can be described by Euler-Lagrange (EL) equations. One of the main challenges in the design of the formation control algorithm is its optimality and robustness to parametric uncertainties, external disturbances and ability to reconfigure in presence of component, actuator, or sensor faults. Furthermore, the controller should be capable of handling switchings in the communication network topology. In this work, nonlinear optimal control techniques are studied for developing distributed controllers for networked EL systems. An individual cost function is introduced to design a controller that relies on only local information exchanges among the agents. In the development of the controller, it is assumed that the communication graph is not fixed (in other words the topology is switching). Additionally, parametric uncertainties and faults in the EL systems are considered and two approaches, namely adaptive and robust techniques are introduced to compensate for the effects of uncertainties and actuator faults. Next, a distributed H_infinity performance measure is considered to develop distributed robust controllers for uncertain networked EL systems. The developed distributed controller is obtained through rigorous analysis and by considering an individual cost function to enhance the robustness of the controllers in presence of parametric uncertainties and external bounded disturbances. Moreover, a rigorous analysis is conducted on the performance of the developed controllers in presence of actuator faults as well as fault diagnostic and identification (FDI) imperfections. Next, synchronization and set-point tracking control of networked EL systems are investigated in presence of three constraints, namely, (i) input saturation constraints, (ii) unavailability of velocity feedback, and (iii) lack of knowledge on the system parameters. It is shown that the developed distributed controllers can accomplish the desired requirements and specification under the above constraints. Finally, a quaternion-based approach is considered for the attitude synchronization and set-point tracking control problem of formation flying spacecraft. Employing the quaternion in the control law design enables handling large rotations in the spacecraft attitude and, therefore, any singularities in the control laws are avoided. Furthermore, using the quaternion also enables one to guarantee boundedness of the control signals both with and without velocity feedback

    A Hierarchical Model-Based Reasoning Approach for Fault Diagnosis in Multi-Platform Space Systems

    Get PDF
    Health monitoring and fault diagnosis in traditional single spacecraft missions are mostly accomplished by human operators on ground through around-the-clock monitoring and trend analysis on huge amount of telemetry data. Future multiplatform space missions, commonly known as the formation flight missions, will utilize multiple inexpensive spacecraft in formation by distributing the functionalities of a single platform among the miniature inexpensive platforms. Current spacecraft diagnosis practices do not scale up well for multiple space platforms due to an increasing need to make the long-duration missions cost-effective by limiting the size of the operations team which will be large if traditional diagnosis is employed. An ideal solution to this problem is to incorporate an autonomous fault detection, isolation, and recovery (FDIR) mechanism. However, the effectiveness of spacecraft autonomy is yet to be demonstrated and due to the existence of perceived risks, it is often desired that the expert human operators be involved in the spacecraft operations and diagnosis processes i.e., the autonomous spacecraft actions be understandable by the human operators on ground so that intervention may be made, if necessary. To address the above problems and requirements, in this research a systematic and transparent fault diagnosis methodology for ground-based operations of multi-platform space systems is developed. First, novel hierarchical fault diagnosis concepts and framework are developed. Within this framework, a multi-platform space system is decomposed hierarchically into multiple levels. The decomposition is driven by the need for supporting the development of the components/subsystems of the overall system by a number of design teams and performing integration at the end. A multi-platform system is considered to be a set of interacting components where components at different levels correspond to formation, system, sub-system, etc. depending on the location of the node in the hierarchy. Two directed graph based fault diagnosis models are developed namely, fuzzy rule based hierarchical fault diagnosis model (HFDM), and Bayesian networks (BN)-based component dependency model (CDM). In HFDM, fault diagnosis of different components in the formation flight is investigated. Fuzzy rules are developed for fault diagnosis at different levels in the hierarchy by taking into account the uncertainties in the fault manifestations in a given component. In this model, the component interactions are quantified without taking the uncertainties in the component health state dependencies into account. Next, a component dependency model (CDM) based on Bayesian networks (BN) models is developed in order to take the uncertainties in component dependencies into account. A novel methodology for identifying CDM parameters is proposed. Fault evidences are introduced to the CDM when the fault modes of a component are observed via fuzzy rule activations. Advantages and limitations associated with the proposed HFDM and the CDM are also discussed. Finally, the verification and validation (V&V) of the hierarchical diagnosis models are investigated via a sensitivity analysis approach. It should be noted that the proposed methodology and the fault diagnosis strategies and algorithms that are developed in this research are generic in a sense that they can be applied to any hierarchically decomposable complex systems. However, the system and domain specific knowledge they require, especially for modeling component dependencies, are mostly available in the aerospace industry where extensive system design and integration-related analysis are common due to high system building cost and failure risks involved
    • …
    corecore