173 research outputs found

    Effective Visible Light Communication System for Underground Mining Industry

    Get PDF
    Adequate lightening and efficient communication technology have prime importance for safe underground mining communication system operations. Existing conventional light and communication systems used in underground mines are not very efficient solutions due to heavy power and maintenance requirements. Also, efficient communication technology is required for instantaneous reporting of any potential disaster event under hazardous underground environment. In this paper, we propose light fidelity (Li-Fi) as an efficient way of incident reporting as well as source of illumination for mines. Visible light communication (VLC) system is being used in mines operations, to support communication-blind areas. It exhibits superior performance over traditional radio frequency (RF) communication systems, in terms of low energy consumption, higher data rates achieved, and wide frequency band (430 − 790) T Hz. In this paper, we present VLC system for safe and reliable mining operations and analyze and discuss corresponding channel impulse response (CIR). We consider effect of shadowing and dust on our optical channel model. We compare the performance of our system with available methods in terms of bit error rate (BER), CIR, and prove the superiority of our proposed system

    Optical Wireless Communication Channel Measurements and Models

    Get PDF

    Performance analysis of wireless mesh networks for underground mines

    Get PDF
    Abstract: Underground mines are harsh environments that have unique challenges that limit wireless communication. To ensure the safety and efficiency of mining operations, communication systems play a vital role. Despite the major developments in communication technologies, underground mines are still challenging environments for wireless communication, however, the advent of wireless mesh networks offers a cutting-edge solution to the mining industry and understanding the performance of this technology is fundamental to its application in dynamic areas of underground mines. This research project aims at conducting a performance analysis of wireless mesh networks by developing a prototype system set up of wireless mesh transceivers to conduct a feasibility study of data transmission on the network in underground mines. The second aspect of this study investigates network parameters, such as latency, throughput, and signal-to-noise, as a function of increasing mesh nodes on the network and internode spacing of mesh nodes. By combining theoretical models with real-time performance of the mesh system, realistic conclusions and better recommendations can be given to mining companies with regards to deploying wireless mesh systems in their underground mines.M.Ing. (Electrical and Electronic Engineering Science

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    Channel modelling for visible light communication systems

    Get PDF
    Visible Light Communications (VLCs) have been identified as a potential solution for mitigating the looming Radio Frequency (RF) spectrum crisis. Having the ability to provide illumination and communication at the same time, this technology has been considered as one of the most promising communication technologies for future wireless networks. VLCs are a viable candidate for short-range indoor applications with very high data rates. In terms of outdoor applications, Vehicular VLCs (VVLCs) play an important role in vehicular ad hoc networks and Intelligent Transportation Systems (ITS). Adopting visible light in vehicular networks offers a great potential to enhance road safety and traffic efficiency towards accident-free driving. For the sake of VLC system design and performance evaluation, it is indispensable to develop accurate, efficient, and flexible channel models, which can fully reflect the characteristics of VLC channels. In this thesis, we first give a comprehensive and up-to-date literature review of the most important indoor Optical Wireless Communications (OWCs) measurement campaigns and channel models, primarily for Wireless Infrared Communications (WIRCs) and VLCs. Consequently, we can identify that an appropriate channel model for VLC systems is currently missing in the literature. This Ph.D. project is therefore devoted to the modelling of VLC channels for both indoor and outdoor communication systems. Second, a new Two-Dimensional (2D) stationary Field of View (FoV) one-ring Regular-Shape Geometry Based Stochastic Model (RS-GBSM) for VLC Single-Input Single-Output (SISO) channels is proposed. The proposed model considers the Line-of-Sight (LoS) and Single-Bounce (SB) components. VLC channel characteristics are analysed based on different positions of the Photodetector (PD) and FoV constraint. Third, we propose a new 2D stationary multiple-bounce RS-GBSM for VLC SISO channels. The proposed model employs a combined two-ring and confocal ellipse model. This model is sufficiently generic and adaptable to a variety of indoor scenarios since the received signal is constructed as the summation of the LoS, SB, Double-Bounce (DB), and Triple-Bounce (TB) rays with different powers. Fourth, a new 2D mobile RS-GBSM for vehicular VLC SISO channels is proposed. The proposed model combines a two-ring model and a confocal ellipse model, and considers SB and DB components in addition to LoS component. Unlike conventional models, the proposed model considers the light that is reflected off moving vehicles around the Transmitter (Tx) and Receiver (Rx), as well as the light that is reflected off the stationary roadside environments. Vehicular VLC channel characteristics are analysed along different distance ranges between 0 and 70 m and different PD heights. Fifth, we propose a novel Three-Dimensional (3D) mobile RS-GBSM for vehicular VLC Multiple-Input Single-Output (MISO) channels. The proposed model combines two-sphere and elliptic-cylinder models. Both the LoS component and SB components, which are reflected off moving vehicles and stationary roadside environments, are considered. The proposed 3D RS-GBSM has the ability to study the impact of the vehicular traffic density on the received power and jointly considers the azimuth and elevation angles by using the von Mises-Fisher (VMF) distribution. In summary, this work proposes new realistic VLC channel models which are useful for the design, test, and performance evaluation of advanced indoor and outdoor VLC systems. Furthermore, it identifies important directions that can be considered in future research, and helps propose new applications that require the development of more realistic channel models before the actual implementation

    Broadband optical wireless communications for the teleoperation of mining equipment

    Get PDF
    The current level of technological advancement of our civilization serving more than seven billion human population requires new sources of biotic and abiotic natural resources. The depletion and scarcity of high-grade mineral deposits in dry land are forcing the Natural Re- sources industry to look for alternate sources in underwater environments and outer space, requiring the creation of reliable broadband omnidirectional wireless communication systems that allows the teleoperation of exploration and production equipment. Within these ob- jectives, Optical Wireless Communications (OWC) are starting to be used as an alternative or complement to standard radio systems, due to important advantages that optical wave- lengths have to transmit data: potential for Terabit/s bit rates, broadband operation in underwater environments, energy e ciency and better protection against interference and eavesdropping. This research focus in two crucial design aspects required to implement broadband OWC systems for the teleoperation of mining equipment: high bandwidth wide beam photon emission and low noise omnidirectional Free-Space Optical (FSO) receivers. Novel OWC omnidirectional receivers using guided wavelength-shifting photon concentra- tion are experimented in over 100 meters range vehicle teleoperation.Master of Science (MSc) in Natural Resources Engineerin

    A Survey on Subsurface Signal Propagation

    Get PDF
    Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs
    corecore