7,327 research outputs found

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents

    Get PDF
    We present a novel method for guiding a large-scale swarm of autonomous agents into a desired formation shape in a distributed and scalable manner. Our Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) algorithm adopts an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled. Each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain. These time-varying Markov matrices are constructed by each agent in real-time using the feedback from the current swarm distribution, which is estimated in a distributed manner. The PSG-IMC algorithm minimizes the expected cost of the transitions per time instant, required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. We demonstrate the effectiveness of this proposed swarm guidance algorithm by using results of numerical simulations and hardware experiments with multiple quadrotors.Comment: Submitted to IEEE Transactions on Robotic

    Autonomous construction using scarce resources in unknown environments: Ingredients for an intelligent robotic interaction with the physical world

    Get PDF
    The goal of creating machines that autonomously perform useful work in a safe, robust and intelligent manner continues to motivate robotics research. Achieving this autonomy requires capabilities for understanding the environment, physically interacting with it, predicting the outcomes of actions and reasoning with this knowledge. Such intelligent physical interaction was at the centre of early robotic investigations and remains an open topic. In this paper, we build on the fruit of decades of research to explore further this question in the context of autonomous construction in unknown environments with scarce resources. Our scenario involves a miniature mobile robot that autonomously maps an environment and uses cubes to bridge ditches and build vertical structures according to high-level goals given by a human. Based on a "real but contrived” experimental design, our results encompass practical insights for future applications that also need to integrate complex behaviours under hardware constraints, and shed light on the broader question of the capabilities required for intelligent physical interaction with the real worl
    • …
    corecore